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Abstract. This note gives an overview of the PKCS family of standards for public-key cryptography. These 
standards cover RSA encryption, Diffie-Hellman key agreement, password-based encryption, extended-certificate 
syntax, cryptographic message syntax, private-key information syntax, and certification request syntax, as well as 
selected attributes. The note gives the motivation for the standards and discusses their relationship to other 
standards or agreements on public-key cryptography. 

1. Introduction 

As public-key cryptography begins to see wide application and acceptance one thing is 
increasingly clear: If it is going to be as effective as the underlying technology allows it 
to be, there must be interoperable standards. Even though vendors may agree on the 
basic public-key techniques, compatibility between implementations is by no means 
guaranteed. Interoperability requires strict adherence to an agreed-upon standard 
format for transferred data. The standards described here provide such a basis for 
interoperability. 

We call the standards described here "Public-Key Cryptography Standards," or "PKCS" 
for short. The standards consist of a number of components, called PKCS #1, #3, #5, #6, 
#7, #8, #9 and #10.1 

The standards presented here evolved from the following broad design goals: 

1. To maintain compatibility with PEM (the Internet Privacy-Enhanced Mail 
protocols, described in RFCs 1421–1424) wherever possible, at least to the 

                                                
*Supersedes June 3, 1991 version, which was also published as NIST/OSI Implementors' Workshop document SEC-
SIG-91-16. PKCS documents are available by electronic mail to <pkcs@rsa.com> . 

1PKCS #2 and #4 are no longer active; both have been incorporated into the current PKCS #1. 
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extent of being able to share certificates and to translate encrypted and/or 
signed messages back and forth between PEM and PKCS. 

2. To extend beyond PEM in being able to handle arbitrary binary data (not 
just ASCII data), to handle a richer set of attributes in (extended) 
certificates, to handle Diffie-Hellman key agreement [DH76], and to 
handle a richer set of features in digitally signed and enveloped data. 

3. To describe a standard suitable for incorporation in future Open Systems 
Interconnection (OSI, described in X.200) standards. The standards here 
are based on the use of OSI standard ASN.1 (Abstract Syntax Notation 
One, described in X.208) and BER (Basic Encoding Rules, described in 
X.209) to describe and represent data. 

PKCS describes the syntax for messages in an abstract manner, and gives complete 
details about algorithms. However, it does not specify how messages are to be 
represented, though BER is the logical choice. Thus PKCS implementations are free to 
exchange messages in any manner, depending on character set, record size constraints, 
and the like, as long as the abstract meaning of the messages can be preserved from 
sender to recipient. 

The PKCS standards are offered by RSA Laboratories to developers of computer 
systems employing public-key technology. It is RSA Laboratories' intention to improve 
and refine the standards in conjunction with computer system developers, with the goal 
of producing standards that most if not all developers adopt. 

The role of RSA Laboratories in the standards-making process is five-fold: 

1. Publish carefully written documents describing the standards. 

2. Retain sole decision-making authority on what each standard is. This 
includes arbitrary object identifier choices, etc. 

3. Solicit opinions and advice from developers on useful or necessary 
changes and extensions. 

4. Publish revised standards when appropriate. 

5. Provide implementation guides and/or reference implementations. 

Thus the standards-making process is not the usual committee-oriented method.  

This note is divided into seven sections including this one. Section 2 gives some 
terminology. Section 3 addresses the question, "What needs to be standardized?" Section 
4 summarizes the PKCS family and Section 5 compares PKCS with other standards. 
Section 6 presents some open issues and Section 7 concludes the note. 
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2. Background information 

This section gives the basic background information necessary to understand the 
terminology in this note. The background information covers three areas: public-key 
cryptography, secret-key cryptography, and message-digest algorithms. For a more 
comprehensive background, the reader is referred to any of several nice survey articles 
[Riv90][Dif88][DH79]. 

2.1 Public-key cryptography 

Public-key cryptography is the technology first identified by Diffie and Hellman [DH76] 
in which encryption and decryption involve different keys. The two keys are the public 
key and the private key, and either can encrypt or decrypt data. A user gives his or her 
public key to other users, keeping the private key to himself or herself. Data encrypted 
with a public key can be decrypted only with the corresponding private key, and vice 
versa. 

A public-key algorithm is an algorithm for encrypting or decrypting data with a public or 
private key. A private key is typically used to encrypt a message digest (see Section 2.3); 
in such an application, the public-key algorithm is called a message-digest encryption 
algorithm. A public key is typically used to encrypt a content-encryption key (see Section 
2.2); in such an application, the public-key algorithm is called a key-encryption algorithm. 

A signature algorithm is an algorithm that transforms a message of any length under a 
private key to a signature in such a way that it is computationally infeasible to find two 
messages with the same signature, to find a message with a given, predetermined 
signature, or to find the signature of a given message without knowledge of the private 
key. Typically, a signature algorithm is implemented by computing a message digest on 
the message (see Section 2.3), then encrypting the message digest with the private key. 

RSA is a public-key algorithm invented by Rivest, Shamir, and Adleman [RSA78] 
involving exponentiation modulo the product of two large prime numbers. The 
difficulty of breaking RSA is generally considered to be equal to the difficulty of 
factoring integers that are the product of two large prime numbers of approximately 
equal size. 

Key agreement is a method whereby two parties, without prior arrangements, exchange 
messages in such a way that they agree upon a secret key that is known only to them. 
Key agreement can be achieved with a public-key algorithm, or with other methods. A 
key-agreement algorithm is an algorithm for achieving key agreement. 

Diffie-Hellman is a key-agreement algorithm invented by Diffie and Hellman [DH76] 
involving exponentiation modulo a large prime number. The difficulty of breaking 
Diffie-Hellman is generally considered to be equal to the difficulty of computing 
discrete logarithms modulo a large prime number. 
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2.2 Secret-key cryptography 

Secret-key cryptography is the technology in which encryption and decryption involve 
the same key, a secret key. Pairs of users share a secret key, keeping the key to 
themselves. Data encrypted with a secret key can be decrypted only with the same 
secret key. 

A secret-key algorithm is an algorithm for encrypting or decrypting data with a secret 
key. A secret key is typically used to encrypt the content of a message; in such an 
application, the key is called a content-encryption key and the secret-key algorithm is 
called a content-encryption algorithm. 

A password-based encryption algorithm is a secret-key algorithm in which the key is 
derived from a user-supplied password. 

The Data Encryption Standard (DES) is the standard federal secret-key algorithm, 
described in FIPS PUB 46–1. Cipher-Block Chaining (CBC) is a mode of DES, described in 
FIPS PUB 81. 

2.3 Message-digest algorithms 

A message-digest algorithm is a method of reducing a message of any length to a string of 
a fixed length, called the message digest, in such a way that it is computationally 
infeasible to find a collision (two messages with the same message digest) or to find a 
message with a given, predetermined message digest. 

MD2 and MD5 are message-digest algorithms invented by RSA Laboratories, and are 
described in RFCs 1319 and 1321. Each inputs an arbitrary message and outputs a 128-
bit message digest. 

3. What needs to be standardized? 

This section addresses the question, "What needs to be standardized?" To answer the 
question, we describe four applications of public-key cryptography: digital signature, 
digital enveloping, digital certification, and key agreement, looking at what aspects are 
suitable for standardization. Our emphasis is on those applications relevant to PKCS; 
there are certainly other applications, such as interactive authentication, that could be 
standardized. 

The discussion of what needs to be standardized assumes two independent levels of 
abstraction. The first level is message syntax, and the second level is specific algorithms. 
The intention is that message syntax and specific algorithms should be orthogonal. For 
example, a standard for the syntax of digitally signed messages should be able to work 
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with any public-key algorithm, not just RSA; and a standard for RSA should be 
applicable to many different message syntax standards. 

The description of the four applications involves the usual cryptographic players Alice 
and Bob. 

3.1 Digital signature 

Digital signature is an application in which a signer, say "Alice," "signs" a message m in 
such a way that anyone can "verify" that the message was signed by no one other than 
Alice, and consequently that the message has not been modified since she signed it. 

The typical implementation of digital signature involves a message-digest algorithm 
and a public-key algorithm for encrypting the message digest (i.e., a message-digest 
encryption algorithm): 

?  Alice reduces the message m to a message digest d with a message-digest 
algorithm; then she encrypts the message digest d with her private key, 
obtaining an encrypted message digest ? . She sends the message m and 
the encrypted message digest ?  to Bob; the two parts together form the 
digitally signed message. 

?  Bob decrypts the encrypted message digest ?  with Alice's public key, 
obtaining the message digest d; then he reduces the message m to a 
comparative message digest d' and compares it to the message digest d. If 
the two are the same, he accepts the message. 

Notice that Bob's work does not involve any information specific to him. Indeed, 
anyone can verify at any time that the message was signed by Alice, without access to 
any secret information. This application assumes that Bob knows Alice's public key; 
methods of developing trust in users' public keys are covered by the digital certificate 
application (Section 3.3). 

Digital signature has three aspects that are suitable for standardization: an algorithm-
independent syntax for digitally signed messages, specific message-digest algorithms, 
and specific public-key (message-digest encryption) algorithms. 

Alice may also need a way to store her private key securely. One way to do this is to 
encrypt a message containing private-key information with a secret key derived from a 
password that Alice supplies. Aspects suitable for standardization here include an 
algorithm-independent syntax for encrypted private-key information, private-key 
syntax for specific public-key algorithms, and specific password-based encryption 
algorithms. 
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3.2 Digital enveloping 

Digital enveloping is an application in which someone "seals" a message m in such a 
way that no one other than the intended recipient, say "Bob," can "open" the sealed 
message. 

The typical implementation of digital enveloping involves a secret-key algorithm for 
encrypting the message (i.e., a content-encryption algorithm) and a public-key 
algorithm for encrypting the secret key (i.e., a key-encryption algorithm): 

?  Alice encrypts the message m with a randomly generated secret key k, 
obtaining an encrypted message c; then she encrypts the secret key k with 
Bob's public key, obtaining an encrypted secret key ? . She sends the 
encrypted message c and the encrypted secret key ?  to Bob; the two parts 
together form the digitally enveloped message. 

?  Bob decrypts the encrypted secret key ?  with his private key, obtaining the 
secret key k; then he decrypts the encrypted message c with the secret key 
k, obtaining the message m. 

Notice that Alice's work does not involve any information specific to her. Indeed, 
anyone can seal a message at any time for Bob, without access to any secret information. 
This application assumes that Alice knows Bob's public key; methods of developing 
trust in users' public keys are covered by the digital certificate application. 

Digital enveloping has three aspects that are suitable for standardization: an algorithm-
independent syntax for digitally enveloped messages, specific secret-key (content-
encryption) algorithms, and specific public-key (key-encryption) algorithms. 

Bob may need a way to store his private key securely, leading to similar aspects for 
standardization as those for digital signatures. 

3.3 Digital certification 

Digital certification is an application in which a certification authority "signs" a special 
message m containing the name of some user, say "Alice," and her public key in such a 
way that anyone can "verify" that the message was signed by no one other than the 
certification authority and thereby develop trust in Alice's public key. 

The typical implementation of digital certification involves a signature algorithm for 
signing the special message. (A signature algorithm is chosen here, rather than a 
message-digest algorithm followed by a message-digest encryption algorithm, as in the 
digital signature application, because X.509 certificates only use a signature algorithm.) 

?  Alice sends a "certification request" containing her name and her public 
key to a certification authority. 
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?  The certification authority forms a special message m from Alice's request 
and signs the special message m under its private key, obtaining a 
signature ? . The certification authority returns the message m and the 
signature ?  to Alice; the two parts together form a certificate. 

?  Alice sends the certificate to Bob to convey trust in her public key. 

?  Bob verifies the signature ?  under the certification authority's public key. 
If the signature verifies, he accepts Alice's public key. 

As with an ordinary digital signature, anyone can verify at any time that the certificate 
was signed by the certification authority, without access to any secret information. 

This application assumes that Bob knows the certification authority's public key. Bob 
can develop trust in the certification authority's public key recursively, if he has a 
certificate containing the certification authority's public key signed by a superior 
certification authority whom he already trusts. In this sense, a certificate is a stepping 
stone in digital trust. Ultimately, one need only trust the public keys of a small number 
of top-level certification authorities. Through a chain of certificates, trust in a large 
number of users' signatures can then be established. 

A broader application of digital certification includes not only Alice's name and public 
key but also other information about Alice in the special message m. Such a message, 
together with a signature, forms what PKCS terms an extended certificate. Extended 
certificates are more than stepping stones in digital trust. They enable the certification 
authority not only to give Bob a means of trusting Alice's public key, but also that other 
information. The other information may include, for example, Alice's electronic-mail 
address, her authorization to sign documents of a given value, or her authorization to 
sign other certificates. 

A certificate-revocation list (CRL) is another type of special message together with a 
signature. The special message for a CRL contains a list of revoked certificates, where 
the certificates are typically referenced indirectly by a serial number. A CRL enables the 
certification authority to "void" its signatures on Alice's certificate or extended 
certificates, as might be required when Alice's name changes or her private key is 
compromised. 

Digital certification has six aspects that are suitable for standardization: an algorithm-
independent syntax for certification requests, an algorithm-independent syntax for 
certificates, an algorithm-independent syntax for extended certificates, an algorithm-
independent syntax for CRLs, public-key syntax for specific public-key algorithms, and 
specific signature algorithms. 
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3.4 Key agreement 

Key agreement is an application in which Alice and Bob, without prior arrangements, 
exchange messages in such a way that they agree upon a secret key that is known only 
to them. The secret key can then be used, for example, to encrypt further 
communication between Alice and Bob. 

The typical implementation of key agreement involves a two-phased key-agreement 
algorithm: 

?  Alice sends a message to Bob initiating the key-agreement protocol. 

?  Alice and Bob independently perform a first phase of some key-agreement 
algorithm, and send the result of that phase to one another. 

?  Alice and Bob independently perform a second phase of the key-
agreement algorithm, after which they arrive at a common agreed-upon 
secret key. 

Key agreement has two aspects that are suitable for standardization: an algorithm-
independent syntax for key-agreement messages, and specific key-agreement 
algorithms. 

3.5 Summary of useful standards 

The foregoing discussion shows that following standards are useful in implementing 
digital signature, digital enveloping, digital certification, and key agreement: 

1. Algorithm-independent syntax: digitally signed messages; digitally 
enveloped messages; certification requests; certificates; extended 
certificates; certificate-revocation lists; encrypted private-key information; 
key-agreement messages. 

2. Algorithm-specific syntax: public keys; private keys. 

3. Algorithms: message digest; secret-key encryption; public-key encryption; 
signature; password-based encryption; key agreement. 

4. The PKCS standards 

This section describes the members of the PKCS family. The descriptions of the 
members are largely taken from the PKCS documents themselves. Table 1 summarizes 
the correspondence between the PKCS standards and the syntax and algorithms 
suitable for standardization discussed in Section 3. When no PKCS is marked, the most 
applicable external works are listed. 
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PKCS leaves ample room for future expansion. Most objects defined by PKCS carry 
version numbers to allow backward compatibility in future revisions. Several of the 
objects also have space for arbitrary "attributes" that carry additional information not 
directly addressed by PKCS. 

4.1 PKCS #1: RSA Encryption Standard 

PKCS #1 describes a method, called rsaEncryption , for encrypting data using the 
RSA public-key cryptosystem. Its intended use is in the construction of digital 
signatures and digital envelopes, as described in PKCS #7: 

?  For digital signatures, the content to be signed is first reduced to a 
message digest with a message-digest algorithm (such as MD5), and then 
an octet string containing the message digest is encrypted with the RSA 
private key of the signer of the content. The content and the encrypted 
message digest are represented together according to the syntax in PKCS 
#7 to yield a digital signature. This application is compatible with Privacy-
Enhanced Mail (PEM) methods. 

 PKCS #  
Standard 1 3 5 6 7 8 9 10 External work 

Algorithm-independent syntax:          
digitally signed messages     x  x   

digitally enveloped messages     x     
certification requests       x x  

certificates         X.509, RFC 1422 
extended certificates    x   x   

certificate-revocation lists         X.509, RFC 1422 
 encrypted private-key info.      x x   

key agreement messages         [ISO90a], [ISO90b] 
Algorithm-specific syntax:          

public keys: RSA x         
private keys: RSA x         

Algorithms:          
message digest: MD2, 5         RFCs 1319, 1321 

secret-key encryption: DES         RFC 1423, [NIST92a] 
public-key encryption: RSA x         

signature: MD2, 4, 5 w/RSA x         
password-based encryption   x       

key agreement: D-H  x        

Table 1. Correspondence between aspects suitable for standardization and PKCS. 
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?  For digital envelopes, the content to be enveloped is first encrypted under 
a content-encryption key with a content-encryption algorithm (such as 
DES), and then the content-encryption key is encrypted with the RSA 
public key(s) of the recipient(s) of the content. The encrypted content and 
the encrypted content-encryption key are represented together according 
to the syntax in PKCS #7 to yield a digital envelope. This application is 
compatible with PEM methods. 

PKCS #1 also describes a syntax for RSA public keys and private keys. The public-key 
syntax would be used in certificates; the private-key syntax would be used typically in 
encrypted private keys (PKCS #8). The public-key syntax is identical to that in both 
X.509 and PEM. Thus X.509/PEM RSA keys can be used in PKCS #1. 

PKCS #1 also defines three signature algorithms, called md2WithRSAEncryption , 
md4WithRSAEncryption , and md5WithRSAEncryption , for use in signing 
X.509/PEM certificates and certificate-revocation lists, PKCS #6 extended certificates, 
and other objects employing digital signatures such as X.400 message tokens. 

4.2 PKCS #3: Diffie-Hellman Key Agreement Standard 

PKCS #3 describes a method for implementing Diffie-Hellman key agreement, whereby 
two parties, without any prior arrangements, can agree upon a secret key that is known 
only to them (and, in particular, is not known to an eavesdropper listening to the 
dialogue by which the parties agree on the key). This secret key can then be used, for 
example, to encrypt further communications between the parties. 

The intended application of PKCS #3 is in protocols for establishing secure connections, 
such as those proposed for OSI's transport and the network layers [ISO90a][ISO90b]. 

4.3 PKCS #5: Password-Based Encryption Standard 

PKCS #5 describes a method for encrypting an octet string with a secret key derived 
from a password. The result of the method is an octet string. Although PKCS #5 can be 
used to encrypt arbitrary octet strings, its intended primary application to public-key 
cryptography is for encrypting private keys when transferring them from one computer 
system to another, as described in PKCS #8. 

PKCS #5 defines two key-encryption algorithms: pbeWithMD2AndDES-CBC and 
pbeWithMD5AndDES-CBC. The algorithms employ DES secret-key encryption in 
cipher-block chaining mode, where the secret key is derived from a password with the 
MD2 or MD5 message-digest algorithm. 
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4.4 PKCS #6: Extended-Certificate Syntax Standard 

PKCS #6 describes a syntax for extended certificates. An extended certificate consists of 
an X.509 public-key certificate and a set of attributes, collectively signed by the issuer of 
the X.509 public-key certificate. Thus the attributes and the enclosed X.509 public-key 
certificate can be verified with a single public-key operation, and an ordinary X.509 
certificate can be extracted if needed, e.g., for Privacy-Enhanced Mail. 

The intention of including a set of attributes is to extend the certification process beyond 
just the public key to include other information about a given entity, such as electronic-
mail address. A non-exhaustive list of attributes is given in PKCS #9. 

The preliminary intended application of PKCS #6 is in the cryptographic-enhancement 
syntax standard (PKCS #7), but it is expected that other applications will be developed. 

4.5 PKCS #7: Cryptographic Message Syntax Standard 

PKCS #7 describes a general syntax for data that may have cryptography applied to it, 
such as digital signatures and digital envelopes. The syntax admits recursion, so that, 
for example, one envelope can be nested inside another, or one party can sign some 
previously enveloped digital data. It also allows arbitrary attributes, such as signing 
time, to be authenticated along with the content of a message, and provides for other 
attributes such as countersignatures to be associated with a signature. A degenerate case 
of the syntax provides a means for disseminating certificates and certificate-revocation 
lists. 

PKCS #7 is compatible with Privacy-Enhanced Mail (PEM) in that signed-data and 
signed-and-enveloped-data content, constructed in a PEM-compatible mode, can be 
converted into PEM messages without any cryptographic operations. PEM messages 
can similarly be converted into the signed-data and signed-and-enveloped data content 
types. 

PKCS #7 can support a variety of architectures for certificate-based key management, 
such as the one described for Privacy-Enhanced Mail in RFC 1422. Architectural 
decisions such as what certificate issuers are considered "top-level," what entities 
certificate issuers are authorized to certify, what distinguished names are considered 
acceptable, and what policies certificate issuers must follow (such as signing with 
secure hardware, or requiring entities to present specific forms of identification) are left 
outside PKCS #7. Dissemination of "hot lists" of invalid certificates (certificate-
revocation lists) is also left outside. 

The values produced according to PKCS #7 are intended to be BER-encoded, which 
means that the values would typically be represented as octet strings. While many 
systems are capable of transmitting arbitrary octet strings reliably, it is well known that 
many electronic-mail systems are not. PKCS #7 does not address mechanisms for 
encoding octet strings as (say) strings of ASCII characters or other techniques for 
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enabling reliable transmission by re-encoding the octet string. RFC 1421 suggests one 
possible solution to this problem. 

4.6 PKCS #8: Private-Key Information Syntax Standard 

PKCS #8 describes a syntax for private-key information. Private-key information 
includes a private key for some public-key algorithm and a set of attributes. PKCS #8 
also describes a syntax for encrypted private keys. A password-based encryption 
algorithm (e.g., one of those described in PKCS #5) could be used to encrypt the 
private-key information. 

The intention of including a set of attributes is to provide a simple way for a user to 
establish trust in information such as a distinguished name or a top-level certification 
authority's public key. While such trust could also be established with a digital 
signature, encryption with a secret key known only to the user is just as effective and 
possibly easier to implement. A non-exhaustive list of attributes is given in PKCS #9. 

4.7 PKCS #9: Selected Attribute Types 

PKCS #9 defines selected attribute types for use in PKCS #6 extended certificates, PKCS 
#7 digitally signed messages, and PKCS #8 private-key information. 

4.8 PKCS #10: Certification Request Syntax Standard 

PKCS #10 describes a syntax for certification requests. A certification request consists of 
a distinguished name, a public key, and optionally a set of attributes, collectively signed 
by the entity requesting certification. Certification requests are sent to a certification 
authority, who transforms the request to an X.509 public-key certificate, or a PKCS #6 
extended certificate. (In what form the certification authority returns the newly signed 
certificate is outside the scope of PKCS #10. A PKCS #7 message is one possibility.) 

The intention of including a set of attributes is twofold: to provide other information 
about a given entity, such as the postal address to which the signed certificate should be 
returned if electronic mail is not available, or a "challenge password" by which the 
entity may later request certificate revocation; and to provide attributes for a PKCS #6 
extended certificate. A non-exhaustive list of attributes is given in PKCS #9. 

Certification authorities may also require non-electronic forms of request and may 
return non-electronic replies. It is expected that descriptions of such forms, which are 
outside the scope of PKCS #10, will be available from the certification authority. 

The preliminary intended application of PKCS #10 is to support PKCS #7 cryptographic 
messages, but is expected that other applications will be developed. 
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5. Compatibility with other work 

This section describes the compatibility of the PKCS standards with other standards or 
agreements on public-key cryptography. For simplicity, we refer to the various works 
involving public-key cryptography as "standards," without regard to their formal 
approval by a standards-making body. 

Compatibility has many meanings. For instance, a standard A may be considered 
compatible with another standard B if standard A provides algorithms that standard B 
can use. Or, standard A may generate data that standard B can process directly. We 
choose the definition that standard A is compatible with standard B if standard A 
provides something useful to standard B, where the usefulness may be contingent on a 
change in representation, and possibly on omission of information. Cryptographic 
operations are not allowed in the change of representation. 

We say standard A is "outbound" compatible with standard B if implementations of 
standard A produce something useful to implementations of standard B, but not 
necessarily vice versa, and we say standard A is "inbound" compatible with standard B 
if implementations of standard B produce something useful to implementations of 
standard A, but not necessarily vice versa. 

We address compatibility with seven related works: 

1. Privacy-Enhanced Mail, as defined in RFCs 1421–1424. 

2. Directory Services— Authentication Framework, as defined in CCITT 
Recommendation X.509. 

3. Message Handling Systems, as defined in CCITT Recommendation X.400. 

4. Draft network-layer and transport-layer security protocols 
[ISO90a][ISO90b]. 

5. NIST's proposed Digital Signature Standard and Secure Hash Standard, as 
defined in [NIST92] and FIPS PUB 180. 

6. ISO/IEC 9796: Digital Signature Scheme Giving Message Recovery. 

7. ANSI X9.30 and .31 (draft): Public-key cryptography with irreversible and 
reversible algorithms. 

5.1 Privacy-Enhanced Mail 

PKCS is inbound compatible with Privacy-Enhanced Mail, as defined in RFCs 1421–
1424. With suitable restrictions, PKCS is outbound compatible as well. 
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5.1.1 Primary compatibilities 

A privacy-enhanced message generated according the Privacy-Enhanced Mail RFCs can 
be converted to a form that can be processed by implementations of PKCS #7 without 
any cryptographic operations. The conversion process is "flat" in the sense that the 
encapsulated text of the privacy-enhanced message becomes the "inner" content of the 
PKCS #7 data. If the encapsulated text happens to contain privacy-enhanced messages, 
those messages are not interpreted in the conversion process. 

Data with certain PKCS #7 cryptographic enhancements can be converted to a form that 
can be processed by implementations of the Privacy-Enhanced Mail RFCs. 

Privacy-Enhanced Mail can effectively be viewed as a set of encoding rules, analogous 
to the Basic Encoding Rules for ASN.1, for PKCS #7 data with these restrictions. 
Conversion from PKCS #7 to PEM may involve omission of attributes from PKCS #6 
extended certificates, which is acceptable since the attributes are not essential to PEM. 

5.1.2 Further compatibilities 

RSA encryption in PKCS #1, in block types 01 and 02, is the same as in PEM, as defined 
RFC 1423. 

Certificates in PEM are one of the alternatives of PKCS #7's 
ExtendedCertificateOrCertificate  type. (See the next section for more details.) 
The md2WithRSAEncryption  and md5WithRSAEncryption  signature algorithms in 
PKCS #1 are the same as PEM's message and certificate signature algorithms. 

Certificate revocation lists (CRLs) in PEM are in PKCS #7's 
CertificateRevocationLists  type. 

5.2 Directory Services— Authentication Framework (X.509) 

PKCS is compatible with Directory Services— Authentication Framework, as defined in 
CCITT Recommendation X.509. 

5.2.1 Primary compatibilities 

A certificate generated according to X.509 can be converted to a form that can be used in 
implementations of PKCS #7. The conversion involves the type 
ExtendedCertificateOrCertificate , which has two alternatives, an X.509 
certificate and a PKCS #6 extended certificate. 

An extended certificate generated according to PKCS #6 can be converted to a form that 
can be used in implementations of X.509, since an extended certificate contains an X.509 
certificate. The conversion involves the omission of extended attributes. 
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5.2.2 Further compatibilities 

RSA private-key encryption in PKCS #1 is the same, in block type 00, as RSA private-
key encryption in X.509. 

The signature process for X.509 certificates is the same as the signature process for PKCS 
#6 extended certificates. That is, both use X.509's SIGNED  macro (or an equivalent 
form), so both can use any signature algorithm consistent with the SIGNED macro. 

The md2WithRSAEncryption  and md5WithRSAEncryption  signature algorithms in 
PKCS #1 are consistent with the SIGNED macro, in that they input an octet string and 
output a bit string. Thus, they can be used in signing X.509 certificates, or any other 
quantity signed in the authentication framework or in other uses of the SIGNED macro 
(e.g., in X.411 security— see Section 5.3.2). 

RSA public-key syntax in X.509 Annex C is the same as RSA public-key syntax in PKCS 
#1. 

5.2.3 Incompatibilities 

RSA encryption in PKCS #1 is different than RSA encryption in X.509, in that the latter 
does not specify any method of padding the quantity input to encryption. 

The rsaEncryption  algorithm is inconsistent with X.509's SIGNED and ENCRYPTED  
macros, in that it outputs an octet string, not a bit string.  

The pbeWithMD2AndDES-CBC and pbeWithMD5AndDES-CBC password-based 
encryption algorithms in PKCS #6 are inconsistent with X.509's ENCRYPTED  macro, in 
that they output an octet string, not a bit string. (However, it is not difficult to convert 
from one form to another.) 

A certificate revocation list (CRL) generated according to X.509 is not compatible with 
Privacy-Enhanced Mail, as defined in RFCs 1421–1424, and hence is not compatible 
with PKCS #7. (Corrections to X.509 RFCs are being considered.) 

The syntax for encrypted private-key information in PKCS #8 does not use X.509's 
ENCRYPTED  macro, or an equivalent form. (The encrypted private key is represented as 
an octet string, not as a bit string, as the ENCRYPTED  macro assumes.) Thus, encryption 
algorithms consistent with X.509's ENCRYPTED  macro are not useful in PKCS #8. 

5.3 Message Handling Systems (X.400) 

PKCS is outbound compatible with Message Handling Systems, as defined in CCITT 
Recommendation X.400, under suitable restrictions, and with the appropriate 
unauthenticated attributes. (This does not mean that PKCS provides sufficient 
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information to build an X.400 message, just that X.400-compatible cryptographic 
enhancements can be computed.) PKCS is not inbound compatible with X.400. 

5.3.1 Primary compatibilities 

Data with certain PKCS #7 cryptographic enhancements and appropriate 
unauthenticated attributes can be converted into a form that can be processed by 
implementations of the X.400 security services. The restrictions on the cryptographic 
enhancements include the following: 

?  the "outer" content type must be signedData  

?  the "inner" content type must be data 

The reason that the "outer" content type must be signedData  is that the "inner" content 
must be presented in the clear, since encrypted content in PKCS #7 is different than 
encrypted content in X.400. The latter encrypts a complete BER encoding, and the 
former encrypts only the contents octets. 

Compatibility with X.400 is achieved by placing an X.411 message token among the 
unauthenticated attributes for the signer of the PKCS #7 data. Computing the X.411 
message token involves another private-key operation with the signer's private key in 
addition to the one for computing the signer's encrypted message digest already 
required by PKCS #7, so X.400 compatibility is not efficient. 

5.3.2 Further compatibilities 

Since the md2WithRSAEncryption  and md5WithRSAEncryption  signature 
algorithms in PKCS #1 are consistent with the SIGNED  and SIGNATURE  macros, as 
discussed in Section 5.2.2, those algorithms can be used in computing these X.411 
quantities: content-integrity check; message origin-authentication check; and 
asymmetric token. 

5.4 Draft network-layer and transport-layer security protocols 

PKCS is compatible with the draft standards for security in the network and transport 
layer [ISO90a][ISO90b]. Specifically, the dhKeyAgreement  algorithm in PKCS #3 can 
be used in either of those draft standards. 

5.5 DSS and SHS 

PKCS is partially compatible with NIST's proposed Digital Signature Standard (DSS). 
PKCS #6 extended certificates may be signed with DSS,  but since DSS signatures do not 
include a PKCS #7 DigestInfo  value, they are not compatible with PKCS #7. 
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PKCS is compatible with the Secure Hash Standard (SHS), which can be used as a 
message-digest algorithm in PKCS #7. 

5.6 ISO/IEC 9796 

PKCS is only partially compatible with the ISO/IEC standard digital signature scheme 
giving message recovery. PKCS #6 extended certificates and PKCS #7 signed-data 
content may be signed according to ISO/IEC 9796. However, PKCS #1 is not 
compatible, as the RSA encryption block format in PKCS #1 is different than the format 
specified by ISO/IEC 9796. 

5.7 ANSI X9.30 and .31 

PKCS is partially compatible with the draft X9.30 and .31 for public-key cryptography 
with irreversible and reversible algorithms. Specifically, signatures in X9.31-1 are based 
on DSS and those in X9.30-1 are based on ISO/IEC 9796, each of which is partially 
compatible with PKCS. It remains to be seen whether X9.30 and .31's key management 
will be compatible with PKCS digital envelopes. 

Certification requests in the draft X9.31-3 are similar to those in the new PKCS #10, but 
not compatible. (Later versions may well be compatible.) 

6. Open issues 

While PKCS provides a basis for interoperability between implementations of public-
key cryptography, some issues relevant to the meaningful interaction of 
implementations remain open.  Two implementations of PKCS may be able to complete 
the four applications in Section 3 successfully, but may have difficulty agreeing on the 
meaning of that success without further agreement on certain issues: names and the 
certification hierarchy. Furthermore, some issues are explicitly left outside of the scope 
of PKCS, such as security conditions on the choice of key. 

This section summarizes the open issues in naming, the certification hierarchy, and 
security conditions. 

6.1 Naming 

Naming of entities is a complicated issue. In adopting X.509 certificates for 
compatibility with PEM, PKCS also adopts X.500 distinguished names, and inherits 
their complexity. Basically, an X.500 distinguished name defines a "path" through an 
X.500 directory tree from the root of the tree to an object of interest. Given that PKCS, 
like PEM, is being developed in advance of widespread deployment of X.500 
directories, it is not clear what most objects' (i.e., Alice's or Bob's) distinguished names 
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are. Some effort is underway to establish conventions for naming (see RFC 1255, X.521, 
or RFC 1422), and implementors of PKCS should anticipate these conventions when 
constructing names. However, there is no guarantee that an entity's name chosen today 
will be the same as the one assigned by an X.500 directory administrator in the future. 
Consequently, certificates constructed today may not necessarily be meaningful to X.500 
implementations in the future. 

(An example of an X.500 directory name is presented in the guide to ASN.1 and BER 
[Kal93].) 

Some of the open issues in naming include: 

?  maximum length of the name in terms of number of arcs (relative 
distinguished names) in the path 

?  constraints on the relative distinguished names (specifically, the 
maximum number of "attribute-value assertions" in an arc, the allowed set 
of attributes, and upper limits on the lengths of values) 

?  conventions for names of particular types of object, e.g., organizations, 
residential persons, organizational persons, etc. 

?  character-set concerns, such as which extensions to the T.61 character set 
are accepted, and when to choose, for example, T.61 as opposed to the 16-
bit Universal Character Set 

RSA Laboratories intends to monitor conventions for naming and to report any progress 
in appendices to future releases of PKCS. 

6.2 Certification 

Another complicated issue is the meaning of certification: specifically, who is trusted to 
issue certificates, and to whom. Syntactically, any entity can sign a certificate as issuer 
with any entity as subject. Practically speaking, one would like to have some manner of 
filtering out certificates whose issuer-to-subject relationship is questionable. For 
instance, one would probably question a certificate issued by one company to 
employees of another company. One would also like to bound the length of certificate 
chains so that the chains can be found and represented easily. As with names, some 
work is underway to establish conventions for certification (see RFC 1422). 

Open issues here include: 

?  what level of trust in the subject's identity is implied by a certificate 

?  the correspondence between the directory tree and issuer-to-subject 
relationships 
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?  which entities can act as top-level certification authorities, having their 
public keys widely known 

?  the maximum length of a certificate chain 

Some of the certification issues can be resolved with PKCS #6 extended certificates. For 
instance, one could define an extended-certificate attribute that indicates the authority 
of a certificate's subject to issue other certificates. Another attribute could indicate to 
what extent the subject can delegate authority.  Such techniques are employed in the 
Electronic Document Authorization architecture [Fis90], but would require further 
study before being included in PKCS. 

Again, RSA Laboratories intends to monitor conventions for certification, and to report 
any progress in appendices to future releases of PKCS. 

6.3 Security conditions 

The three algorithm standards— PKCS #1 (RSA Encryption Standard), PKCS #3 (Diffie-
Hellman Key Agreement standard), and PKCS #5 (Password-Based Encryption 
Standard)— all involve security conditions on the choice of key (or password, in the case 
of PKCS #5). Such conditions may change as the state of the art in cryptanalysis 
improves, and are subject to tradeoffs between performance and security. For example, 
the conventional argument that the factors of the RSA modulus should be strong primes 
seems no longer to hold [Riv91], which is why PKCS neither mandates strong primes, 
nor discourages their use. Since security conditions do not affect the format of 
transferred data, the security conditions are left outside the scope of PKCS. 

Specific open issues, left to implementors, include: 

?  range of lengths of RSA modulus n in PKCS #1 (for example, RFC 1423 
sets the range as 508 to 1024 bits); 

?  conditions on RSA primes p and q, such as whether p? 1 and q? 1 should 
have large factors, and how far apart p and q should be; 

?  additional conditions on the RSA public exponent e and the RSA private 
exponent d; 

?  range of lengths of the Diffie-Hellman modulus p in PKCS #3; 

?  conditions on the Diffie-Hellman modulus p, such as whether p? 1 should 
have a large factor; 

?  conditions on the Diffie-Hellman base g, such as how large a group it 
should generate (e.g., all nonzero elements modulo p); 

?  length of the Diffie-Hellman private value x; 
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?  range of lengths of the password P in PKCS #5; 

?  structural requirements on the password P (e.g., at least one non-
alphanumeric character); and 

?  sources of pseudorandom bits in all the algorithm standards. 

It is RSA Laboratories' intention to release "recommended practices" documents from 
time to time that address security conditions such as those just listed. 

7. Conclusion 

The PKCS family of standards addresses the following need: an agreed-upon standard 
format for transferred data based on public-key cryptography. PKCS covers several 
aspects of public-key cryptography, including RSA encryption, Diffie-Hellman key 
agreement, password-based encryption, extended-certificate syntax, cryptographic-
enhancement syntax, and private-key information syntax. PKCS evolved from three 
broad design goals: to maintain compatibility with Privacy-Enhanced Mail, to extend 
beyond PEM, and to be suitable for incorporation in future OSI standards. 

This note has summarized PKCS. It has shown that PKCS provides a basis for 
interoperability in the several areas of interest, and that PKCS has a high level of PEM 
compatibility, several extensions, and significant compatibility with existing OSI 
standards. The note has also identified some open issues outside the scope of PKCS. The 
reader is encouraged to review and implement PKCS and to make constructive 
comments. 
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Revision history 

June 3, 1991 version 

The June 3, 1991 version is part of the initial public release of PKCS. It was published as 
NIST/OSI Implementors' Workshop document SEC-SIG-91-16. 

November 1, 1993 version 

The November 1, 1993 version incorporates several editorial changes, including the 
addition of a revision history. It is updated to be consistent with the following versions 
of the PKCS documents: 

PKCS #1: RSA Encryption Standard. Version 1.5, November 1993. 

PKCS #3: Diffie-Hellman Key-Agreement Standard. Version 1.4, November 1993. 

PKCS #5: Password-Based Encryption Standard. Version 1.5, November 1993. 

PKCS #6: Extended-Certificate Syntax Standard. Version 1.5, November 1993. 

PKCS #7: Cryptographic Message Syntax Standard. Version 1.5, November 1993. 

PKCS #8: Private-Key Information Syntax Standard. Version 1.2, November 1993. 

PKCS #9: Selected Attribute Types. Version 1.1, November 1993. 

PKCS #10: Certification Request Syntax Standard. Version 1.0, November 1993. 

The following substantive changes were made: 

Section 5: Compatibility with NIST's proposed Digital Signature Standard and  
Secure Hash Standard, ISO/IEC 9796, and ANSI X9.30 and .31 is 
discussed. 
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