
Copyright ? 1991–1993 RSA Laboratories, a division of RSA Data Security, Inc. License to copy this
document is granted provided that it is identified as "RSA Data Security, Inc. Public-Key Cryptography
Standards (PKCS)" in all material mentioning or referencing this document.
003-903015-110-000-000

A Layman's Guide to a Subset of
ASN.1, BER, and DER
An RSA Laboratories Technical Note
Burton S. Kaliski Jr.
Revised November 1, 1993*

Abstract. This note gives a layman's introduction to a subset of OSI's Abstract Syntax Notation One (ASN.1),
Basic Encoding Rules (BER), and Distinguished Encoding Rules (DER). The particular purpose of this note is to
provide background material sufficient for understanding and implementing the PKCS family of standards.

1. Introduction

It is a generally accepted design principle that abstraction is a key to managing software
development. With abstraction, a designer can specify a part of a system without
concern for how the part is actually implemented or represented. Such a practice leaves
the implementation open; it simplifies the specification; and it makes it possible to state
"axioms" about the part that can be proved when the part is implemented, and assumed
when the part is employed in another, higher-level part. Abstraction is the hallmark of
most modern software specifications.

One of the most complex systems today, and one that also involves a great deal of
abstraction, is Open Systems Interconnection (OSI, described in X.200). OSI is an
internationally standardized architecture that governs the interconnection of computers
from the physical layer up to the user application layer. Objects at higher layers are
defined abstractly and intended to be implemented with objects at lower layers. For
instance, a service at one layer may require transfer of certain abstract objects between
computers; a lower layer may provide transfer services for strings of ones and zeroes,
using encoding rules to transform the abstract objects into such strings. OSI is called an
open system because it supports many different implementations of the services at each
layer.

*Supersedes June 3, 1991 version, which was also published as NIST/OSI Implementors' Workshop document SEC-
SIG-91-17. PKCS documents are available by electronic mail to <pkcs@rsa.com>.

Page 2 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

OSI's method of specifying abstract objects is called ASN.1 (Abstract Syntax Notation
One, defined in X.208), and one set of rules for representing such objects as strings of
ones and zeros is called the BER (Basic Encoding Rules, defined in X.209). ASN.1 is a
flexible notation that allows one to define a variety data types, from simple types such
as integers and bit strings to structured types such as sets and sequences, as well as
complex types defined in terms of others. BER describes how to represent or encode
values of each ASN.1 type as a string of eight-bit octets. There is generally more than
one way to BER-encode a given value. Another set of rules, called the Distinguished
Encoding Rules (DER), which is a subset of BER, gives a unique encoding to each ASN.1
value.

The purpose of this note is to describe a subset of ASN.1, BER and DER sufficient to
understand and implement one OSI-based application, RSA Data Security, Inc.'s Public-
Key Cryptography Standards. The features described include an overview of ASN.1,
BER, and DER and an abridged list of ASN.1 types and their BER and DER encodings.
Sections 2— 4 give an overview of ASN.1, BER, and DER, in that order. Section 5 lists
some ASN.1 types, giving their notation, specific encoding rules, examples, and
comments about their application to PKCS. Section 6 concludes with an example, X.500
distinguished names.

Advanced features of ASN.1, such as macros, are not described in this note, as they are
not needed to implement PKCS. For information on the other features, and for more
detail generally, the reader is referred to CCITT Recommendations X.208 and X.209,
which define ASN.1 and BER.

Terminology and notation. In this note, an octet is an eight-bit unsigned integer. Bit 8
of the octet is the most significant and bit 1 is the least significant.

The following meta-syntax is used for in describing ASN.1 notation:

BIT monospace denotes literal characters in the type and value notation; in
examples, it generally denotes an octet value in hexadecimal

n1 bold italics denotes a variable

[] bold square brackets indicate that a term is optional

{} bold braces group related terms

| bold vertical bar delimits alternatives with a group

? bold ellipsis indicates repeated occurrences

= bold equals sign expresses terms as subterms

2. ABSTRACT SYNTAX NOTATION ONE Page 3

2. Abstract Syntax Notation One

Abstract Syntax Notation One, abbreviated ASN.1, is a notation for describing abstract
types and values.

In ASN.1, a type is a set of values. For some types, there are a finite number of values,
and for other types there are an infinite number. A value of a given ASN.1 type is an
element of the type's set. ASN.1 has four kinds of type: simple types, which are "atomic"
and have no components; structured types, which have components; tagged types,
which are derived from other types; and other types, which include the CHOICE type
and the ANY type. Types and values can be given names with the ASN.1 assignment
operator (::=) , and those names can be used in defining other types and values.

Every ASN.1 type other than CHOICE and ANY has a tag, which consists of a class and a
nonnegative tag number. ASN.1 types are abstractly the same if and only if their tag
numbers are the same. In other words, the name of an ASN.1 type does not affect its
abstract meaning, only the tag does. There are four classes of tag:

Universal, for types whose meaning is the same in all applications; these types are
only defined in X.208.

Application, for types whose meaning is specific to an application, such as X.500
directory services; types in two different applications may have the same
application-specific tag and different meanings.

Private, for types whose meaning is specific to a given enterprise.

Context-specific, for types whose meaning is specific to a given structured type;
context-specific tags are used to distinguish between component types
with the same underlying tag within the context of a given structured
type, and component types in two different structured types may have the
same tag and different meanings.

The types with universal tags are defined in X.208, which also gives the types' universal
tag numbers. Types with other tags are defined in many places, and are always
obtained by implicit or explicit tagging (see Section 2.3). Table 1 lists some ASN.1 types
and their universal-class tags.

Page 4 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

Type Tag number
(decimal)

Tag number
(hexadecimal)

INTEGER 2 02
BIT STRING 3 03
OCTET STRING 4 04
NULL 5 05
OBJECT IDENTIFIER 6 06
SEQUENCE and SEQUENCE OF 16 10
SET and SET OF 17 11
PrintableString 19 13
T61String 20 14
IA5String 22 16
UTCTime 23 17

Table 1. Some types and their universal-class tags.

ASN.1 types and values are expressed in a flexible, programming-language-like
notation, with the following special rules:

? Layout is not significant; multiple spaces and line breaks can be
considered as a single space.

? Comments are delimited by pairs of hyphens (--), or a pair of hyphens
and a line break.

? Identifiers (names of values and fields) and type references (names of
types) consist of upper- and lower-case letters, digits, hyphens, and
spaces; identifiers begin with lower-case letters; type references begin
with upper-case letters.

The following four subsections give an overview of simple types, structured types,
implicitly and explicitly tagged types, and other types. Section 5 describes specific types
in more detail.

2.1 Simple types

Simple types are those not consisting of components; they are the "atomic" types. ASN.1
defines several; the types that are relevant to the PKCS standards are the following:

BIT STRING , an arbitrary string of bits (ones and zeroes).

IA5String , an arbitrary string of IA5 (ASCII) characters.

INTEGER , an arbitrary integer.

NULL, a null value.

2. ABSTRACT SYNTAX NOTATION ONE Page 5

OBJECT IDENTIFIER , an object identifier, which is a sequence of integer
components that identify an object such as an algorithm or attribute type.

OCTET STRING , an arbitrary string of octets (eight-bit values).

PrintableString , an arbitrary string of printable characters.

T61String , an arbitrary string of T.61 (eight-bit) characters.

UTCTime , a "coordinated universal time" or Greenwich Mean Time (GMT) value.

Simple types fall into two categories: string types and non-string types. BIT STRING ,
IA5String , OCTET STRING , PrintableString, T61String , and UTCTime are
string types.

String types can be viewed, for the purposes of encoding, as consisting of components,
where the components are substrings. This view allows one to encode a value whose
length is not known in advance (e.g., an octet string value input from a file stream) with
a constructed, indefinite-length encoding (see Section 3).

The string types can be given size constraints limiting the length of values.

2.2 Structured types

Structured types are those consisting of components. ASN.1 defines four, all of which
are relevant to the PKCS standards:

SEQUENCE, an ordered collection of one or more types.

SEQUENCE OF , an ordered collection of zero or more occurrences of a given type.

SET, an unordered collection of one or more types.

SET OF, an unordered collection of zero or more occurrences of a given type.

The structured types can have optional components, possibly with default values.

2.3 Implicitly and explicitly tagged types

Tagging is useful to distinguish types within an application; it is also commonly used to
distinguish component types within a structured type. For instance, optional
components of a SET or SEQUENCE type are typically given distinct context-specific tags
to avoid ambiguity.

There are two ways to tag a type: implicitly and explicitly.

Page 6 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

Implicitly tagged types are derived from other types by changing the tag of the
underlying type. Implicit tagging is denoted by the ASN.1 keywords [class number]
IMPLICIT (see Section 5.1).

Explicitly tagged types are derived from other types by adding an outer tag to the
underlying type. In effect, explicitly tagged types are structured types consisting of one
component, the underlying type. Explicit tagging is denoted by the ASN.1 keywords
[class number] EXPLICIT (see Section 5.2).

The keyword [class number] alone is the same as explicit tagging, except when the
"module" in which the ASN.1 type is defined has implicit tagging by default.
("Modules" are among the advanced features not described in this note.)

For purposes of encoding, an implicitly tagged type is considered the same as the
underlying type, except that the tag is different. An explicitly tagged type is considered
like a structured type with one component, the underlying type. Implicit tags result in
shorter encodings, but explicit tags may be necessary to avoid ambiguity if the tag of
the underlying type is indeterminate (e.g., the underlying type is CHOICE or ANY).

2.4 Other types

Other types in ASN.1 include the CHOICE and ANY types. The CHOICE type denotes a
union of one or more alternatives; the ANY type denotes an arbitrary value of an
arbitrary type, where the arbitrary type is possibly defined in the registration of an
object identifier or integer value.

3. Basic Encoding Rules

The Basic Encoding Rules for ASN.1, abbreviated BER, give one or more ways to
represent any ASN.1 value as an octet string. (There are certainly other ways to
represent ASN.1 values, but BER is the standard for interchanging such values in OSI.)

There are three methods to encode an ASN.1 value under BER, the choice of which
depends on the type of value and whether the length of the value is known. The three
methods are primitive, definite-length encoding; constructed, definite-length encoding;
and constructed, indefinite-length encoding. Simple non-string types employ the
primitive, definite-length method; structured types employ either of the constructed
methods; and simple string types employ any of the methods, depending on whether
the length of the value is known. Types derived by implicit tagging employ the method
of the underlying type and types derived by explicit tagging employ the constructed
methods.

In each method, the BER encoding has three or four parts:

3. BASIC ENCODING RULES Page 7

Identifier octets. These identify the class and tag number of the ASN.1 value, and
indicate whether the method is primitive or constructed.

Length octets. For the definite-length methods, these give the number of contents
octets. For the constructed, indefinite-length method, these indicate that
the length is indefinite.

Contents octets. For the primitive, definite-length method, these give a concrete
representation of the value. For the constructed methods, these give the
concatenation of the BER encodings of the components of the value.

End-of-contents octets. For the constructed, indefinite-length method, these denote
the end of the contents. For the other methods, these are absent.

The three methods of encoding are described in the following sections.

3.1 Primitive, definite-length method

This method applies to simple types and types derived from simple types by implicit
tagging. It requires that the length of the value be known in advance. The parts of the
BER encoding are as follows:

Identifier octets. There are two forms: low tag number (for tag numbers between 0 and
30) and high tag number (for tag numbers 31 and greater).

Low-tag-number form. One octet. Bits 8 and 7 specify the class (see Table 2), bit 6
has value "0," indicating that the encoding is primitive, and bits 5— 1 give
the tag number.

Class Bit 8 Bit 7
universal 0 0
application 0 1
context-specific 1 0
private 1 1

Table 2. Class encoding in identifier octets.

High-tag-number form. Two or more octets. First octet is as in low-tag-number
form, except that bits 5–1 all have value "1." Second and following octets
give the tag number, base 128, most significant digit first, with as few
digits as possible, and with the bit 8 of each octet except the last set to "1."

Length octets. There are two forms: short (for lengths between 0 and 127), and long
definite (for lengths between 0 and 21008? 1).

Short form. One octet. Bit 8 has value "0" and bits 7–1 give the length.

Page 8 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

Long form. Two to 127 octets. Bit 8 of first octet has value "1" and bits 7–1 give the
number of additional length octets. Second and following octets give the
length, base 256, most significant digit first.

Contents octets. These give a concrete representation of the value (or the value of the
underlying type, if the type is derived by implicit tagging). Details for particular types
are given in Section 5.

3.2 Constructed, definite-length method

This method applies to simple string types, structured types, types derived simple
string types and structured types by implicit tagging, and types derived from anything
by explicit tagging. It requires that the length of the value be known in advance. The
parts of the BER encoding are as follows:

Identifier octets. As described in Section 3.1, except that bit 6 has value "1," indicating
that the encoding is constructed.

Length octets. As described in Section 3.1.

Contents octets. The concatenation of the BER encodings of the components of the
value:

? For simple string types and types derived from them by implicit tagging,
the concatenation of the BER encodings of consecutive substrings of the
value (underlying value for implicit tagging).

? For structured types and types derived from them by implicit tagging, the
concatenation of the BER encodings of components of the value
(underlying value for implicit tagging).

? For types derived from anything by explicit tagging, the BER encoding of
the underlying value.

Details for particular types are given in Section 5.

3.3 Constructed, indefinite-length method

This method applies to simple string types, structured types, types derived simple
string types and structured types by implicit tagging, and types derived from anything
by explicit tagging. It does not require that the length of the value be known in advance.
The parts of the BER encoding are as follows:

Identifier octets. As described in Section 3.2.

Length octets. One octet, 80.

4. DISTINGUISHED ENCODING RULES Page 9

Contents octets. As described in Section 3.2.

End-of-contents octets. Two octets, 00 00.

Since the end-of-contents octets appear where an ordinary BER encoding might be
expected (e.g., in the contents octets of a sequence value), the 00 and 00 appear as
identifier and length octets, respectively. Thus the end-of-contents octets is really the
primitive, definite-length encoding of a value with universal class, tag number 0, and
length 0.

4. Distinguished Encoding Rules

The Distinguished Encoding Rules for ASN.1, abbreviated DER, are a subset of BER,
and give exactly one way to represent any ASN.1 value as an octet string. DER is
intended for applications in which a unique octet string encoding is needed, as is the
case when a digital signature is computed on an ASN.1 value. DER is defined in Section
8.7 of X.509.

DER adds the following restrictions to the rules given in Section 3:

1. When the length is between 0 and 127, the short form of length must be
used

2. When the length is 128 or greater, the long form of length must be used,
and the length must be encoded in the minimum number of octets.

3. For simple string types and implicitly tagged types derived from simple
string types, the primitive, definite-length method must be employed.

4. For structured types, implicitly tagged types derived from structured
types, and explicitly tagged types derived from anything, the constructed,
definite-length method must be employed.

Other restrictions are defined for particular types (such as BIT STRING , SEQUENCE,
SET, and SET OF), and can be found in Section 5.

5. Notation and encodings for some types

This section gives the notation for some ASN.1 types and describes how to encode
values of those types under both BER and DER.

The types described are those presented in Section 2. They are listed alphabetically here.

Page 10 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

Each description includes ASN.1 notation, BER encoding, and DER encoding. The focus
of the encodings is primarily on the contents octets; the tag and length octets follow
Sections 3 and 4. The descriptions also explain where each type is used in PKCS and
related standards. ASN.1 notation is generally only for types, although for the type
OBJECT IDENTIFIER , value notation is given as well.

5.1 Implicitly tagged types

An implicitly tagged type is a type derived from another type by changing the tag of
the underlying type.

Implicit tagging is used for optional SEQUENCE components with underlying type other
than ANY throughout PKCS, and for the extendedCertificate alternative of PKCS
#7's ExtendedCertificateOrCertificate type.

ASN.1 notation:

[[class] number] IMPLICIT Type

class = UNIVERSAL | APPLICATION | PRIVATE

where Type is a type, class is an optional class name, and number is the tag number
within the class, a nonnegative integer.

In ASN.1 "modules" whose default tagging method is implicit tagging, the notation
[[class] number] Type is also acceptable, and the keyword IMPLICIT is implied. (See
Section 2.3.) For definitions stated outside a module, the explicit inclusion of the
keyword IMPLICIT is preferable to prevent ambiguity.

If the class name is absent, then the tag is context-specific. Context-specific tags can only
appear in a component of a structured or CHOICE type.

Example: PKCS #8's PrivateKeyInfo type has an optional attributes component
with an implicit, context-specific tag:

PrivateKeyInfo ::= SEQUENCE {
 version Version,
 privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
 privateKey PrivateKey,
 attributes [0] IMPLICIT Attributes OPTIONAL }

Here the underlying type is Attributes , the class is absent (i.e., context-specific), and
the tag number within the class is 0.

BER encoding. Primitive or constructed, depending on the underlying type. Contents
octets are as for the BER encoding of the underlying value.

5. NOTATION AND ENCODINGS FOR SOME TYPES Page 11

Example: The BER encoding of the attributes component of a PrivateKeyInfo
value is as follows:

? the identifier octets are 80 if the underlying Attributes value has a
primitive BER encoding and a0 if the underlying Attributes value has
a constructed BER encoding

? the length and contents octets are the same as the length and contents
octets of the BER encoding of the underlying Attributes value

DER encoding. Primitive or constructed, depending on the underlying type. Contents
octets are as for the DER encoding of the underlying value.

5.2 Explicitly tagged types

Explicit tagging denotes a type derived from another type by adding an outer tag to the
underlying type.

Explicit tagging is used for optional SEQUENCE components with underlying type ANY
throughout PKCS, and for the version component of X.509's Certificate type.

ASN.1 notation:

[[class] number] EXPLICIT Type

class = UNIVERSAL | APPLICATION | PRIVATE

where Type is a type, class is an optional class name, and number is the tag number
within the class, a nonnegative integer.

If the class name is absent, then the tag is context-specific. Context-specific tags can only
appear in a component of a SEQUENCE, SET or CHOICE type.

In ASN.1 "modules" whose default tagging method is explicit tagging, the notation
[[class] number] Type is also acceptable, and the keyword EXPLICIT is implied. (See
Section 2.3.) For definitions stated outside a module, the explicit inclusion of the
keyword EXPLICIT is preferable to prevent ambiguity.

Example 1: PKCS #7's ContentInfo type has an optional content component with an
explicit, context-specific tag:

ContentInfo ::= SEQUENCE {
 contentType ContentType,
 content
 [0] EXPLICIT ANY DEFINED BY contentType OPTIONAL }

Page 12 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

Here the underlying type is ANY DEFINED BY contentType , the class is absent (i.e.,
context-specific), and the tag number within the class is 0.

Example 2: X.509's Certificate type has a version component with an explicit,
context-specific tag, where the EXPLICIT keyword is omitted:

Certificate ::= ...
 version [0] Version DEFAULT v1988,
...

The tag is explicit because the default tagging method for the ASN.1 "module" in X.509
that defines the Certificate type is explicit tagging.

BER encoding. Constructed. Contents octets are the BER encoding of the underlying
value.

Example: the BER encoding of the content component of a ContentInfo value is as
follows:

? identifier octets are a0

? length octets represent the length of the BER encoding of the underlying
ANY DEFINED BY contentType value

? contents octets are the BER encoding of the underlying ANY DEFINED BY
contentType value

DER encoding. Constructed. Contents octets are the DER encoding of the underlying
value.

5.3 ANY

The ANY type denotes an arbitrary value of an arbitrary type, where the arbitrary type is
possibly defined in the registration of an object identifier or associated with an integer
index.

The ANY type is used for content of a particular content type in PKCS #7's
ContentInfo type, for parameters of a particular algorithm in X.509's
AlgorithmIdentifier type, and for attribute values in X.501's Attribute and
AttributeValueAssertion types. The Attribute type is used by PKCS #6, #7, #8,
#9 and #10, and the AttributeValueAssertion type is used in X.501 distinguished
names.

ASN.1 notation:

ANY [DEFINED BY identifier]

5. NOTATION AND ENCODINGS FOR SOME TYPES Page 13

where identifier is an optional identifier.

In the ANY form, the actual type is indeterminate.

The ANY DEFINED BY identifier form can only appear in a component of a SEQUENCE
or SET type for which identifier identifies some other component, and that other
component has type INTEGER or OBJECT IDENTIFIER (or a type derived from either
of those by tagging). In that form, the actual type is determined by the value of the other
component, either in the registration of the object identifier value, or in a table of integer
values.

Example: X.509's AlgorithmIdentifier type has a component of type ANY:

AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY DEFINED BY algorithm OPTIONAL }

Here the actual type of the parameter component depends on the value of the
algorithm component. The actual type would be defined in the registration of object
identifier values for the algorithm component.

BER encoding. Same as the BER encoding of the actual value.

Example: The BER encoding of the value of the parameter component is the BER
encoding of the value of the actual type as defined in the registration of object identifier
values for the algorithm component.

DER encoding. Same as the DER encoding of the actual value.

5.4 BIT STRING

The BIT STRING type denotes an arbitrary string of bits (ones and zeroes). A BIT
STRING value can have any length, including zero. This type is a string type.

The BIT STRING type is used for digital signatures on extended certificates in PKCS
#6's ExtendedCertificate type, for digital signatures on certificates in X.509's
Certificate type, and for public keys in certificates in X.509's
SubjectPublicKeyInfo type.

ASN.1 notation:

BIT STRING

Example: X.509's SubjectPublicKeyInfo type has a component of type BIT
STRING:

Page 14 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 publicKey BIT STRING }

BER encoding. Primitive or constructed. In a primitive encoding, the first contents octet
gives the number of bits by which the length of the bit string is less than the next
multiple of eight (this is called the "number of unused bits"). The second and following
contents octets give the value of the bit string, converted to an octet string. The
conversion process is as follows:

1. The bit string is padded after the last bit with zero to seven bits of any
value to make the length of the bit string a multiple of eight. If the length
of the bit string is a multiple of eight already, no padding is done.

2. The padded bit string is divided into octets. The first eight bits of the
padded bit string become the first octet, bit 8 to bit 1, and so on through
the last eight bits of the padded bit string.

In a constructed encoding, the contents octets give the concatenation of the BER
encodings of consecutive substrings of the bit string, where each substring except the
last has a length that is a multiple of eight bits.

Example: The BER encoding of the BIT STRING value "011011100101110111" can be any
of the following, among others, depending on the choice of padding bits, the form of
length octets, and whether the encoding is primitive or constructed:

03 04 06 6e 5d c0 DER encoding

03 04 06 6e 5d e0 padded with "100000"

03 81 04 06 6e 5d c0 long form of length octets

23 09 constructed encoding: "0110111001011101" + "11"
 03 03 00 6e 5d
 03 02 06 c0

DER encoding. Primitive. The contents octects are as for a primitive BER encoding,
except that the bit string is padded with zero-valued bits.

Example: The DER encoding of the BIT STRING value "011011100101110111" is

03 04 06 6e 5d c0

5.5 CHOICE

The CHOICE type denotes a union of one or more alternatives.

5. NOTATION AND ENCODINGS FOR SOME TYPES Page 15

The CHOICE type is used to represent the union of an extended certificate and an X.509
certificate in PKCS #7's ExtendedCertificateOrCertificate type.

ASN.1 notation:

CHOICE {
 [identifier1] Type1,
 ? ,
 [identifiern] Typen }

where identifier1 , ? , identifiern are optional, distinct identifiers for the alternatives,
and Type1, ? , Typen are the types of the alternatives. The identifiers are primarily for
documentation; they do not affect values of the type or their encodings in any way.

The types must have distinct tags. This requirement is typically satisfied with explicit or
implicit tagging on some of the alternatives.

Example: PKCS #7's ExtendedCertificateOrCertificate type is a CHOICE type:

ExtendedCertificateOrCertificate ::= CHOICE {
 certificate Certificate, -- X.509
 extendedCertificate [0] IMPLICIT ExtendedCertificate
}

Here the identifiers for the alternatives are certificate and
extendedCertificate , and the types of the alternatives are Certificate and [0]
IMPLICIT ExtendedCertificate .

BER encoding. Same as the BER encoding of the chosen alternative. The fact that the
alternatives have distinct tags makes it possible to distinguish between their BER
encodings.

Example: The identifier octets for the BER encoding are 30 if the chosen alternative is
certificate , and a0 if the chosen alternative is extendedCertificate .

DER encoding. Same as the DER encoding of the chosen alternative.

5.6 IA5String

The IA5String type denotes an arbtrary string of IA5 characters. IA5 stands for
International Alphabet 5, which is the same as ASCII. The character set includes non-
printing control characters. An IA5String value can have any length, including zero.
This type is a string type.

The IA5String type is used in PKCS #9's electronic-mail address, unstructured-name,
and unstructured-address attributes.

Page 16 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

ASN.1 notation:

IA5String

BER encoding. Primitive or constructed. In a primitive encoding, the contents octets
give the characters in the IA5 string, encoded in ASCII. In a constructed encoding, the
contents octets give the concatenation of the BER encodings of consecutive substrings of
the IA5 string.

Example: The BER encoding of the IA5String value "test1@rsa.com" can be any of the
following, among others, depending on the form of length octets and whether the
encoding is primitive or constructed:

16 0d 74 65 73 74 31 40 72 73 61 2e 63 6f 6d DER encoding

16 81 0d long form of length octets
 74 65 73 74 31 40 72 73 61 2e 63 6f 6d

36 13 constructed encoding: "test1" + "@" + "rsa.com"
 16 05 74 65 73 74 31
 16 01 40
 16 07 72 73 61 2e 63 6f 6d

DER encoding. Primitive. Contents octets are as for a primitive BER encoding.

Example: The DER encoding of the IA5String value "test1@rsa.com" is

16 0d 74 65 73 74 31 40 72 73 61 2e 63 6f 6d

5.7 INTEGER

The INTEGER type denotes an arbitrary integer. INTEGER values can be positive,
negative, or zero, and can have any magnitude.

The INTEGER type is used for version numbers throughout PKCS, cryptographic values
such as modulus, exponent, and primes in PKCS #1's RSAPublicKey and
RSAPrivateKey types and PKCS #3's DHParameter type, a message-digest iteration
count in PKCS #5's PBEParameter type, and version numbers and serial numbers in
X.509's Certificate type.

ASN.1 notation:

INTEGER [{ identifier1(value1) ? identifiern(valuen) }]

where identifier1, ? , identifiern are optional distinct identifiers and value1, ? , valuen
are optional integer values. The identifiers, when present, are associated with values of
the type.

5. NOTATION AND ENCODINGS FOR SOME TYPES Page 17

Example: X.509's Version type is an INTEGER type with identified values:

Version ::= INTEGER { v1988(0) }

The identifier v1988 is associated with the value 0. X.509's Certificate type uses the
identifier v1988 to give a default value of 0 for the version component:

Certificate ::= ...
 version Version DEFAULT v1988,
...

BER encoding. Primitive. Contents octets give the value of the integer, base 256, in
two's complement form, most significant digit first, with the minimum number of
octets. The value 0 is encoded as a single 00 octet.

Some example BER encodings (which also happen to be DER encodings) are given in
Table 3.

Integer
value

BER encoding

0 02 01 00
127 02 01 7F
128 02 02 00 80
256 02 02 01 00
-128 02 01 80
-129 02 02 FF 7F

Table 3. Example BER encodings of INTEGER values.

DER encoding. Primitive. Contents octets are as for a primitive BER encoding.

5.8 NULL

The NULL type denotes a null value.

The NULL type is used for algorithm parameters in several places in PKCS.

ASN.1 notation:

NULL

BER encoding. Primitive. Contents octets are empty.

Example: The BER encoding of a NULL value can be either of the following, as well as
others, depending on the form of the length octets:

05 00

Page 18 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

05 81 00

DER encoding. Primitive. Contents octets are empty; the DER encoding of a NULL value
is always 05 00.

5.9 OBJECT IDENTIFIER

The OBJECT IDENTIFIER type denotes an object identifier, a sequence of integer
components that identifies an object such as an algorithm, an attribute type, or perhaps
a registration authority that defines other object identifiers. An OBJECT IDENTIFIER
value can have any number of components, and components can generally have any
nonnegative value. This type is a non-string type.

OBJECT IDENTIFIER values are given meanings by registration authorities. Each
registration authority is responsible for all sequences of components beginning with a
given sequence. A registration authority typically delegates responsibility for subsets of
the sequences in its domain to other registration authorities, or for particular types of
object. There are always at least two components.

The OBJECT IDENTIFIER type is used to identify content in PKCS #7's ContentInfo
type, to identify algorithms in X.509's AlgorithmIdentifier type, and to identify
attributes in X.501's Attribute and AttributeValueAssertion types. The
Attribute type is used by PKCS #6, #7, #8, #9, and #10, and the
AttributeValueAssertion type is used in X.501 distinguished names. OBJECT
IDENTIFIER values are defined throughout PKCS.

ASN.1 notation:

OBJECT IDENTIFIER

The ASN.1 notation for values of the OBJECT IDENTIFIER type is

{ [identifier] component1 ? componentn }

componenti = identifieri | identifieri (valuei) | valuei

where identifier, identifier1, ? , identifiern are identifiers, and value1, ? , valuen are
optional integer values.

The form without identifier is the "complete" value with all its components; the form
with identifier abbreviates the beginning components with another object identifier
value. The identifiers identifier1, ? , identifiern are intended primarily for
documentation, but they must correspond to the integer value when both are present.
These identifiers can appear without integer values only if they are among a small set of
identifiers defined in X.208.

5. NOTATION AND ENCODINGS FOR SOME TYPES Page 19

Example: The following values both refer to the object identifier assigned to RSA Data
Security, Inc.:

{ iso(1) member-body(2) 840 113549 }
{ 1 2 840 113549 }

(In this example, which gives ASN.1 value notation, the object identifier values are
decimal, not hexadecimal.) Table 4 gives some other object identifier values and their
meanings.

Object identifier value Meaning
{ 1 2 } ISO member bodies
{ 1 2 840 } US (ANSI)
{ 1 2 840 113549 } RSA Data Security, Inc.
{ 1 2 840 113549 1 } RSA Data Security, Inc. PKCS
{ 2 5 } directory services (X.500)
{ 2 5 8 } directory services— algorithms

Table 4. Some object identifier values and their meanings.

BER encoding. Primitive. Contents octets are as follows, where value1, ? , valuen denote
the integer values of the components in the complete object identifier:

1. The first octet has value 40 ? ?value1 + value2. (This is unambiguous, since
value1 is limited to values 0, 1, and 2; value2 is limited to the range 0 to 39
when value1 is 0 or 1; and, according to X.208, n is always at least 2.)

2. The following octets, if any, encode value3, ? , valuen. Each value is
encoded base 128, most significant digit first, with as few digits as
possible, and the most significant bit of each octet except the last in the
value's encoding set to "1."

Example: The first octet of the BER encoding of RSA Data Security, Inc.'s object identifier
is 40 ? ?? ?? ?? = 42 = 2a16. The encoding of 840 = 6 ? ?? ? ? ?? ?? ? 16 is 86 48 and the
encoding of 113549 = 6 ? ?? ? ? ? + 7716 ? ?? ? ? ?? ?d16 is 86 f7 0d . This leads to the
following BER encoding:

06 06 2a 86 48 86 f7 0d

DER encoding. Primitive. Contents octets are as for a primitive BER encoding.

5.10 OCTET STRING

The OCTET STRING type denotes an arbitrary string of octets (eight-bit values). An
OCTET STRING value can have any length, including zero. This type is a string type.

Page 20 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

The OCTET STRING type is used for salt values in PKCS #5's PBEParameter type, for
message digests, encrypted message digests, and encrypted content in PKCS #7, and for
private keys and encrypted private keys in PKCS #8.

ASN.1 notation:

OCTET STRING [SIZE ({size | size1..size2})]

where size, size1, and size2 are optional size constraints. In the OCTET STRING SIZE
(size) form, the octet string must have size octets. In the OCTET STRING SIZE
(size1..size2) form, the octet string must have between size1 and size2 octets. In the
OCTET STRING form, the octet string can have any size.

Example: PKCS #5's PBEParameter type has a component of type OCTET STRING :

PBEParameter ::= SEQUENCE {
 salt OCTET STRING SIZE(8),
 iterationCount INTEGER }

Here the size of the salt component is always eight octets.

BER encoding. Primitive or constructed. In a primitive encoding, the contents octets
give the value of the octet string, first octet to last octet. In a constructed encoding, the
contents octets give the concatenation of the BER encodings of substrings of the OCTET
STRING value.

Example: The BER encoding of the OCTET STRING value 01 23 45 67 89 ab cd
ef can be any of the following, among others, depending on the form of length octets
and whether the encoding is primitive or constructed:

04 08 01 23 45 67 89 ab cd ef DER encoding

04 81 08 01 23 45 67 89 ab cd ef long form of length octets

24 0c constructed encoding: 01 ... 67 + 89 ... ef
 04 04 01 23 45 67
 04 04 89 ab cd ef

DER encoding. Primitive. Contents octets are as for a primitive BER encoding.

Example: The BER encoding of the OCTET STRING value 01 23 45 67 89 ab cd
ef is

04 08 01 23 45 67 89 ab cd ef

5. NOTATION AND ENCODINGS FOR SOME TYPES Page 21

5.11 PrintableString

The PrintableString type denotes an arbitrary string of printable characters from
the following character set:

 A, B, ? , Z
 a, b, ? , z
 0, 1, ? , 9
 (space) ' () + , - . / : = ?

This type is a string type.

The PrintableString type is used in PKCS #9's challenge-password and
unstructuerd-address attributes, and in several X.521 distinguished names attributes.

ASN.1 notation:

PrintableString

BER encoding. Primitive or constructed. In a primitive encoding, the contents octets
give the characters in the printable string, encoded in ASCII. In a constructed encoding,
the contents octets give the concatenation of the BER encodings of consecutive
substrings of the string.

Example: The BER encoding of the PrintableString value "Test User 1" can be any of
the following, among others, depending on the form of length octets and whether the
encoding is primitive or constructed:

13 0b 54 65 73 74 20 55 73 65 72 20 31 DER encoding

13 81 0b 54 65 73 74 20 55 73 65 72 20 31
 long form of length octets

33 0f constructed encoding: "Test " + "User 1"
 13 05 54 65 73 74 20
 13 06 55 73 65 72 20 31

DER encoding. Primitive. Contents octets are as for a primitive BER encoding.

Example: The DER encoding of the PrintableString value "Test User 1" is

13 0b 54 65 73 74 20 55 73 65 72 20 31

5.12 SEQUENCE

The SEQUENCE type denotes an ordered collection of one or more types.

The SEQUENCE type is used throughout PKCS and related standards.

Page 22 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

ASN.1 notation:

SEQUENCE {
 [identifier1] Type1 [{OPTIONAL | DEFAULT value1}],
 ? ,
 [identifiern] Typen [{OPTIONAL | DEFAULT valuen}]}

where identifier1 , ? , identifiern are optional, distinct identifiers for the components,
Type1, ? , Typen are the types of the components, and value1, ? , valuen are optional
default values for the components. The identifiers are primarily for documentation; they
do not affect values of the type or their encodings in any way.

The OPTIONAL qualifier indicates that the value of a component is optional and need
not be present in the sequence. The DEFAULT qualifier also indicates that the value of a
component is optional, and assigns a default value to the component when the
component is absent.

The types of any consecutive series of components with the OPTIONAL or DEFAULT
qualifier, as well as of any component immediately following that series, must have
distinct tags. This requirement is typically satisfied with explicit or implicit tagging on
some of the components.

Example: X.509's Validity type is a SEQUENCE type with two components:

Validity ::= SEQUENCE {
 start UTCTime,
 end UTCTime }

Here the identifiers for the components are start and end, and the types of the
components are both UTCTime.

BER encoding. Constructed. Contents octets are the concatenation of the BER encodings
of the values of the components of the sequence, in order of definition, with the
following rules for components with the OPTIONAL and DEFAULT qualifiers:

? if the value of a component with the OPTIONAL or DEFAULT qualifier is
absent from the sequence, then the encoding of that component is not
included in the contents octets

? if the value of a component with the DEFAULT qualifier is the default
value, then the encoding of that component may or may not be included in
the contents octets

DER encoding. Constructed. Contents octets are the same as the BER encoding, except
that if the value of a component with the DEFAULT qualifier is the default value, the
encoding of that component is not included in the contents octets.

5. NOTATION AND ENCODINGS FOR SOME TYPES Page 23

5.13 SEQUENCE OF

The SEQUENCE OF type denotes an ordered collection of zero or more occurrences of a
given type.

The SEQUENCE OF type is used in X.501 distinguished names.

ASN.1 notation:

SEQUENCE OF Type

where Type is a type.

Example: X.501's RDNSequence type consists of zero or more occurences of the
RelativeDistinguishedName type, most significant occurrence first:

RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

BER encoding. Constructed. Contents octets are the concatenation of the BER encodings
of the values of the occurrences in the collection, in order of occurence.

DER encoding. Constructed. Contents octets are the concatenation of the DER
encodings of the values of the occurrences in the collection, in order of occurence.

5.14 SET

The SET type denotes an unordered collection of one or more types.

The SET type is not used in PKCS.

ASN.1 notation:

SET {
 [identifier1] Type1 [{OPTIONAL | DEFAULT value1}],
 ? ,
 [identifiern] Typen [{OPTIONAL | DEFAULT valuen}]}

where identifier1, ? , identifiern are optional, distinct identifiers for the components,
Type1, ? , Typen are the types of the components, and value1, ? , valuen are optional
default values for the components. The identifiers are primarily for documentation; they
do not affect values of the type or their encodings in any way.

The OPTIONAL qualifier indicates that the value of a component is optional and need
not be present in the set. The DEFAULT qualifier also indicates that the value of a
component is optional, and assigns a default value to the component when the
component is absent.

Page 24 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

The types must have distinct tags. This requirement is typically satisfied with explicit or
implicit tagging on some of the components.

BER encoding. Constructed. Contents octets are the concatenation of the BER encodings
of the values of the components of the set, in any order, with the following rules for
components with the OPTIONAL and DEFAULT qualifiers:

? if the value of a component with the OPTIONAL or DEFAULT qualifier is
absent from the set, then the encoding of that component is not included
in the contents octets

? if the value of a component with the DEFAULT qualifier is the default
value, then the encoding of that component may or may not be included in
the contents octets

DER encoding. Constructed. Contents octets are the same as for the BER encoding,
except that:

1. If the value of a component with the DEFAULT qualifier is the default
value, the encoding of that component is not included.

2. There is an order to the components, namely ascending order by tag.

5.15 SET OF

The SET OF type denotes an unordered collection of zero or more occurrences of a
given type.

The SET OF type is used for sets of attributes in PKCS #6, #7, #8, #9 and #10, for sets of
message-digest algorithm identifiers, signer information, and recipient information in
PKCS #7, and in X.501 distinguished names.

ASN.1 notation:

SET OF Type

where Type is a type.

Example: X.501's RelativeDistinguishedName type consists of zero or more
occurrences of the AttributeValueAssertion type, where the order is unimportant:

RelativeDistinguishedName ::=
 SET OF AttributeValueAssertion

BER encoding. Constructed. Contents octets are the concatenation of the BER encodings
of the values of the occurrences in the collection, in any order.

5. NOTATION AND ENCODINGS FOR SOME TYPES Page 25

DER encoding. Constructed. Contents octets are the same as for the BER encoding,
except that there is an order, namely ascending lexicographic order of BER encoding.
Lexicographic comparison of two different BER encodings is done as follows: Logically
pad the shorter BER encoding after the last octet with dummy octets that are smaller in
value than any normal octet. Scan the BER encodings from left to right until a difference
is found. The smaller-valued BER encoding is the one with the smaller-valued octet at
the point of difference.

5.16 T61String

The T61String type denotes an arbtrary string of T.61 characters. T.61 is an eight-bit
extension to the ASCII character set. Special "escape" sequences specify the
interpretation of subsequent character values as, for example, Japanese; the initial
interpretation is Latin. The character set includes non-printing control characters. The
T61String type allows only the Latin and Japanese character interepretations, and
implementors' agreements for directory names exclude control characters [NIST92]. A
T61String value can have any length, including zero. This type is a string type.

The T61String type is used in PKCS #9's unstructured-address and challenge-
password attributes, and in several X.521 attributes.

ASN.1 notation:

T61String

BER encoding. Primitive or constructed. In a primitive encoding, the contents octets
give the characters in the T.61 string, encoded in ASCII. In a constructed encoding, the
contents octets give the concatenation of the BER encodings of consecutive substrings of
the T.61 string.

Example: The BER encoding of the T61String value "clés publiques" (French for
"public keys") can be any of the following, among others, depending on the form of
length octets and whether the encoding is primitive or constructed:

14 0f DER encoding
 63 6c c2 65 73 20 70 75 62 6c 69 71 75 65 73

14 81 0f long form of length octets
 63 6c c2 65 73 20 70 75 62 6c 69 71 75 65 73

34 15 constructed encoding: "clés" + " " + "publiques"
 14 05 63 6c c2 65 73
 14 01 20
 14 09 70 75 62 6c 69 71 75 65 73

The eight-bit character c2 is a T.61 prefix that adds an acute accent (´) to the next
character.

Page 26 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

DER encoding. Primitive. Contents octets are as for a primitive BER encoding.

Example: The DER encoding of the T61String value "clés publiques" is

14 0f 63 6c c2 65 73 20 70 75 62 6c 69 71 75 65 73

5.17 UTCTime

The UTCTime type denotes a "coordinated universal time" or Greenwich Mean Time
(GMT) value. A UTCTime value includes the local time precise to either minutes or
seconds, and an offset from GMT in hours and minutes. It takes any of the following
forms:

YYMMDDhhmmZ
YYMMDDhhmm+hh'mm'
YYMMDDhhmm-hh'mm'
YYMMDDhhmmssZ
YYMMDDhhmmss+hh'mm'
YYMMDDhhmmss-hh'mm'

where:

YY is the least significant two digits of the year

MM is the month (01 to 12)

DD is the day (01 to 31)

hh is the hour (00 to 23)

mm are the minutes (00 to 59)

ss are the seconds (00 to 59)

Z indicates that local time is GMT, + indicates that local time is later than GMT,
and - indicates that local time is earlier than GMT

hh' is the absolute value of the offset from GMT in hours

mm' is the absolute value of the offset from GMT in minutes

This type is a string type.

The UTCTime type is used for signing times in PKCS #9's signing-time attribute and for
certificate validity periods in X.509's Validity type.

ASN.1 notation:

6. AN EXAMPLE Page 27

UTCTime

BER encoding. Primitive or constructed. In a primitive encoding, the contents octets
give the characters in the string, encoded in ASCII. In a constructed encoding, the
contents octets give the concatenation of the BER encodings of consecutive substrings of
the string. (The constructed encoding is not particularly interesting, since UTCTime
values are so short, but the constructed encoding is permitted.)

Example: The time this sentence was originally written was 4:45:40 p.m. Pacific Daylight
Time on May 6, 1991, which can be represented with either of the following UTCTime
values, among others:

"910506164540-0700"

"910506234540Z"

These values have the following BER encodings, among others:

17 0d 39 31 30 35 30 36 32 33 34 35 34 30 5a

17 11 39 31 30 35 30 36 31 36 34 35 34 30 2D 30 37 30
 30

DER encoding. Primitive. Contents octets are as for a primitive BER encoding.

6. An example

This section gives an example of ASN.1 notation and DER encoding: the X.501 type
Name.

6.1 Abstract notation

This section gives the ASN.1 notation for the X.501 type Name.

Name ::= CHOICE {
 RDNSequence }

RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

RelativeDistinguishedName ::=
 SET OF AttributeValueAssertion

AttributeValueAssertion ::= SEQUENCE {
 AttributeType,
 AttributeValue }

AttributeType ::= OBJECT IDENTIFIER

Page 28 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

AttributeValue ::= ANY

The Name type identifies an object in an X.500 directory. Name is a CHOICE type
consisting of one alternative: RDNSequence . (Future revisions of X.500 may have other
alternatives.)

The RDNSequence type gives a path through an X.500 directory tree starting at the root.
RDNSequence is a SEQUENCE OF type consisting of zero or more occurences of
RelativeDistinguishedName .

The RelativeDistinguishedName type gives a unique name to an object relative to
the object superior to it in the directory tree. RelativeDistinguishedName is a SET
OF type consisting of zero or more occurrences of AttributeValueAssertion .

The AttributeValueAssertion type assigns a value to some attribute of a relative
distinguished name, such as country name or common name.
AttributeValueAssertion is a SEQUENCE type consisting of two components, an
AttributeType type and an AttributeValue type.

The AttributeType type identifies an attribute by object identifier. The
AttributeValue type gives an arbitrary attribute value. The actual type of the
attribute value is determined by the attribute type.

6.2 DER encoding

This section gives an example of a DER encoding of a value of type Name, working from
the bottom up.

The name is that of the Test User 1 from the PKCS examples [Kal93]. The name is
represented by the following path:

(root)
|

countryName = "US"
|

organizationName = "Example Organization"
|

commonName = "Test User 1"

Each level corresponds to one RelativeDistinguishedName value, each of which
happens for this name to consist of one AttributeValueAssertion value. The
AttributeType value is before the equals sign, and the AttributeValue value (a
printable string for the given attribute types) is after the equals sign.

The countryName , organizationName , and commonUnitName are attribute types
defined in X.520 as:

6. AN EXAMPLE Page 29

attributeType OBJECT IDENTIFIER ::=
 { joint-iso-ccitt(2) ds(5) 4 }

countryName OBJECT IDENTIFIER ::= { attributeType 6 }
organizationName OBJECT IDENTIFIER ::=
 { attributeType 10 }
commonUnitName OBJECT IDENTIFIER ::=
 { attributeType 3 }

6.2.1 AttributeType

The three AttributeType values are OCTET STRING values, so their DER encoding
follows the primitive, definite-length method:

06 03 55 04 06 countryName

06 03 55 04 0a organizationName

06 03 55 04 03 commonName

The identifier octets follow the low-tag form, since the tag is 6 for OBJECT
IDENTIFIER . Bits 8 and 7 have value "0," indicating universal class, and bit 6 has value
"0," indicating that the encoding is primitive. The length octets follow the short form.
The contents octets are the concatenation of three octet strings derived from
subidentifiers (in decimal): 40 ? 2 + 5 = 85 = 5516; 4; and 6, 10, or 3.

6.2.2 AttributeValue

The three AttributeValue values are PrintableString values, so their encodings
follow the primitive, definite-length method:

13 02 55 53 "US"

13 14 "Example Organization"
 45 78 61 6d 70 6c 65 20 4f 72 67 61 6e 69 7a 61
 74 69 6f 6e

13 0b "Test User 1"
 54 65 73 74 20 55 73 65 72 20 31

The identifier octets follow the low-tag-number form, since the tag for
PrintableString , 19 (decimal), is between 0 and 30. Bits 8 and 7 have value "0" since
PrintableString is in the universal class. Bit 6 has value "0" since the encoding is
primitive. The length octets follow the short form, and the contents octets are the ASCII
representation of the attribute value.

Page 30 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

6.2.3 AttributeValueAssertion

The three AttributeValueAssertion values are SEQUENCE values, so their DER
encodings follow the constructed, definite-length method:

30 09 countryName = "US"
 06 03 55 04 06
 13 02 55 53

30 1b organizationName = "Example Organizaiton"
 06 03 55 04 0a
 13 14 ... 6f 6e

30 12 commonName = "Test User 1"
 06 03 55 04 0b
 13 0b ... 20 31

The identifier octets follow the low-tag-number form, since the tag for SEQUENCE, 16
(decimal), is between 0 and 30. Bits 8 and 7 have value "0" since SEQUENCE is in the
universal class. Bit 6 has value "1" since the encoding is constructed. The length octets
follow the short form, and the contents octets are the concatenation of the DER
encodings of the attributeType and attributeValue components.

6.2.4 RelativeDistinguishedName

The three RelativeDistinguishedName values are SET OF values, so their DER
encodings follow the constructed, definite-length method:

31 0b
 30 09 ... 55 53

31 1d
 30 1b ... 6f 6e

31 14
 30 12 ... 20 31

The identifier octets follow the low-tag-number form, since the tag for SET OF, 17
(decimal), is between 0 and 30. Bits 8 and 7 have value "0" since SET OF is in the
universal class Bit 6 has value "1" since the encoding is constructed. The lengths octets
follow the short form, and the contents octets are the DER encodings of the respective
AttributeValueAssertion values, since there is only one value in each set.

6.2.5 RDNSequence

The RDNSequence value is a SEQUENCE OF value, so its DER encoding follows the
constructed, definite-length method:

REFERENCES Page 31

30 42
 31 0b ... 55 53
 31 1d ... 6f 6e
 31 14 ... 20 31

The identifier octets follow the low-tag-number form, since the tag for SEQUENCE OF ,
16 (decimal), is between 0 and 30. Bits 8 and 7 have value "0" since SEQUENCE OF is in
the universal class. Bit 6 has value "1" since the encoding is constructed. The lengths
octets follow the short form, and the contents octets are the concatenation of the DER
encodings of the three RelativeDistinguishedName values, in order of occurrence.

6.2.6 Name

The Name value is a CHOICE value, so its DER encoding is the same as that of the
RDNSequence value:

30 42
 31 0b
 30 09
 06 03 55 04 06 attributeType = countryName
 13 02 55 53 attributeValue = "US"
 31 1d
 30 1b
 06 03 55 04 0a attributeType = organizationName
 13 14 attributeValue = "Example Organization"
 45 78 61 6d 70 6c 65 20 4f 72 67 61 6e 69 7a 61
 74 69 6f 6e
 31 14
 30 12
 06 03 55 04 03 attributeType = commonName
 13 0b attributeValue = "Test User 1"
 54 65 73 74 20 55 73 65 72 20 31

References

PKCS #1 RSA Laboratories. PKCS #1: RSA Encryption Standard. Version 1.5, November 1993.

PKCS #3 RSA Laboratories. PKCS #3: Diffie-Hellman Key-Agreement Standard. Version 1.4,
November 1993.

PKCS #5 RSA Laboratories. PKCS #5: Password-Based Encryption Standard. Version 1.5, November
1993.

PKCS #6 RSA Laboratories. PKCS #6: Extended-Certificate Syntax Standard. Version 1.5, November
1993.

PKCS #7 RSA Laboratories. PKCS #7: Cryptographic Message Syntax Standard. Version 1.5,
November 1993.

PKCS #8 RSA Laboratories. PKCS #8: Private-Key Information Syntax Standard. Version 1.2,
November 1993.

Page 32 A LAYMAN'S GUIDE TO A SUBSET OF ASN.1, BER, AND DER

PKCS #9 RSA Laboratories. PKCS #9: Selected Attribute Types. Version 1.1, November 1993.

PKCS #10 RSA Laboratories. PKCS #10: Certification Request Syntax Standard. Version 1.0,
November 1993.

X.200 CCITT. Recommendation X.200: Reference Model of Open Systems Interconnection for CCITT
Applications. 1984.

X.208 CCITT. Recommendation X.208: Specification of Abstract Syntax Notation One (ASN.1). 1988.

X.209 CCITT. Recommendation X.209: Specification of Basic Encoding Rules for Abstract Syntax
Notation One (ASN.1). 1988.

X.500 CCITT. Recommendation X.500: The Directory— Overview of Concepts, Models and Services.
1988.

X.501 CCITT. Recommendation X.501: The Directory— Models. 1988.

X.509 CCITT. Recommendation X.509: The Directory— Authentication Framework. 1988.

X.520 CCITT. Recommendation X.520: The Directory— Selected Attribute Types. 1988.

[Kal93] Burton S. Kaliski Jr. Some Examples of the PKCS Standards. RSA Laboratories, November
1993.

[NIST92] NIST. Special Publication 500-202: Stable Implementation Agreements for Open Systems
Interconnection Protocols. Part 11 (Directory Services Protocols). December 1992.

REVISION HISTORY Page 33

Revision history

June 3, 1991 version

The June 3, 1991 version is part of the initial public release of PKCS. It was published as
NIST/OSI Implementors' Workshop document SEC-SIG-91-17.

November 1, 1993 version

The November 1, 1993 version incorporates several editorial changes, including the
addition of a revision history. It is updated to be consistent with the following versions
of the PKCS documents:

PKCS #1: RSA Encryption Standard. Version 1.5, November 1993.

PKCS #3: Diffie-Hellman Key-Agreement Standard. Version 1.4, November 1993.

PKCS #5: Password-Based Encryption Standard. Version 1.5, November 1993.

PKCS #6: Extended-Certificate Syntax Standard. Version 1.5, November 1993.

PKCS #7: Cryptographic Message Syntax Standard. Version 1.5, November 1993.

PKCS #8: Private-Key Information Syntax Standard. Version 1.2, November 1993.

PKCS #9: Selected Attribute Types. Version 1.1, November 1993.

PKCS #10: Certification Request Syntax Standard. Version 1.0, November 1993.

The following substantive changes were made:

Section 5: Description of T61String type is added.

Section 6: Names are changed, consistent with other PKCS examples.

Author's address

Burton S. Kaliski Jr., Ph.D.
Chief Scientist
RSA Laboratories (415) 595-7703
100 Marine Parkway (415) 595-4126 (fax)
Redwood City, CA 94065 USA burt@rsa.com

