
student research project

Open reference implementation of a
SCEP v2 client

Ueli Rutishauser Alain Schäfer
<urut@easc.ch> <alani@easc.ch>

Advisor
Dr. Andreas F. Müller

March 1, 2002

Typeset by LATEX

Contents

Preface iv

1 Introduction 1

2 Motivation 3

2.1 Requirements . 3

3 Solutions 5

3.1 Certificate Storage . 5

3.1.1 Browser supported certificate installation . 5

3.2 Client as a Java application . 6

3.3 Client as a Java applet . 7

3.4 Native Client . 7

3.5 Decision . 7

4 Architecture 8

4.1 General Architecture . 8

4.2 Types of SCEP clients . 8

4.2.1 Browser based clients . 8

4.2.2 Application scenarios for browser based environments 9

4.2.3 Embedded clients . 11

4.3 Third party products . 11

4.3.1 BouncyCastle Crypto API . 11

4.3.2 ACME Serve . 11

4.3.3 JDK1.3 / J2ME . 12

4.3.4 OpenSCEP 0.4.2 . 12

5 Design and Implementation 13

i

CONTENTS

5.1 Overview . 13

5.2 Core . 13

5.2.1 Overall Design . 13

5.2.2 Utils - Logging . 13

5.2.3 Utils - MD5 Hash and RSA Algorithm . 15

5.2.4 Utils - HTTP Client . 15

5.2.5 Utils - Base64 encoding, conversion of DER Objects 15

5.2.6 Protocol - Commands . 17

5.2.7 Protocol - PKCS#7 . 17

5.3 Proxy . 17

5.3.1 Design . 17

5.3.2 Configuration . 21

5.3.3 Translation . 22

5.3.4 Appearance . 22

5.4 Command Line Client . 22

5.4.1 Implementation . 23

5.4.2 Options . 23

5.4.3 Examples . 23

5.5 Packaging . 24

5.6 Deployment . 25

5.6.1 Build . 25

5.6.2 Configuration . 25

A Proposal for the extension of the SCEP Protocol 26

A.1 Motivation . 26

A.2 Extension 1: Proxy . 27

A.3 Extension 2: generic certificate request format . 28

A.4 ASN.1 specification of the proposal . 28

A.5 SPKAC example . 31

A.6 PKCS#10 example . 32

Glossary 34

Bibliography 35

ii

List of Figures

3.1 The Netscape 6.x certificate store . 6

3.2 The MS Windows certificate store . 7

4.1 Architecture of a SCEP client . 8

4.2 Architecture of a system with Browsers as clients . 9

4.3 Sequence Diagram of a certificate request . 10

4.4 Architecture of a embedded system SCEP client . 10

5.1 Class diagram of the core parts . 14

5.2 Log class . 15

5.3 Cryptography support classes . 16

5.4 HTTP client class . 16

5.5 Base64 support classes . 17

5.6 Classes for the SCEP commands . 18

5.7 PKCS#7 . 18

5.8 HTTP proxy classes . 19

5.9 Sequence of a User interacting with the Proxy . 20

A.1 Sequence Diagram that shows how a certificate request is being forwarded by a SCEP proxy . 27

iii

Preface

by
Dr. Andreas Müller,
Institute of Applied Mathematics,
University of Applied Science Rapperswil, Switzerland

The Simple Certificate Enrollment Protocol (SCEP), originally devised by Cisco and used in IOS based
routers to deploy certificates for IPsec VPNs, has proved to be quite successful in many large scale instal-
lations. It even became part of other applications, like the Open Settlement Protocol (OSP) used in IP
telephony. Its most compelling feature for large scale installations is the possibility to automatically enroll
certificates: each certificate requesting entity is authenticated by a password that is used only once, during
the enrollment, but is never transmitted in clear. This obviates out of band request verification, normally
required to establish the identity of the certificate requestor. Certificate enrollment becomes a much less
tedious procedure.

Unfortunately, Internet Browsers, another large group of potential certificate consumers, are not capable of
speaking SCEP. Even worse, SCEP in its present form is not capable of transporting a certificate request as
generated by say Netscape Navigator for at least two reasons: the special format (SPKAC) this browser is
using and the problem that a SCEP client must have access to the private key of the certificate request.

Other enrollment protocols discussed for large scale enrollment suffer from the same or similar difficulties. So
why not take the lightweight SCEP and try to adapt it to a wider range of clients? If the proven suitabilty of
SCEP for embedded systems (VPN gateways and IP phones as examples) can be conserved while extending
its applicability to browsers, traditionally difficult certificate consumers like set-top boxes become prime
candidates for SCEP.

Ueli Rutishauser and Alain Schaefer have taken a detailed look at SCEP and have found two extensions
which will remove the limitations alluded to in the previous paragraphs. By writing a SCEP client imple-
mentation in Java, capable of running within small JVMs like the J2ME, they have verified their proposal
(driving the free SCEP implementation of the OpenSCEP project to also include these new features) and
opened the possibility to use SCEP in many more applications than currently possible. Besides their read-
ily useable HTTP SCEP proxy to enroll browsers, the command line client could be used on FreeS/WAN
based VPN-Gateways to establish the necessary trust relationsships. The fact that their implementation
is quite conservative as far as operating system resources are concerned proves that a Java based solution
can be an option for embedded systems for an application domain that has traditionally been reserved to
“bit-twiddling” languages like C.

iv

Chapter 1

Introduction

The only suitable cryptography scheme for secure communication between an potentially large number of
users is public key cryptography. The prime advantage of Public Key Cryptography is that it doesn’t require
any previous out-of-band communication between two entities that want to communicate securely. If Bob
wants to send a secure message to Alice, Bob simply takes the public key of Alice and encrypts the message
with it. The problem here is not the encryption algorithm itself but rather the public key. Bob must be able
to verify that the public key really belongs to Alice. That is where Certificates and Public Key Infrastructure
become part of the game.

Certificates are a collection of a distinguished name (identification of the end entity, for example ’Alice’), a
public key and a signature. The signature is the key element with which a user of a public key is able to
verify that a public key belongs to a particular distinguished name. The signature of a certificate is being
generated by a third party that is trusted by both involved parties. The third party, the so called certificate
authority (CA), confirms that a public key really belongs to a particular distinguished name by signing the
certificate. Afterwards, whoever wants to verify whether a certificate is valid or not can do so by comparing
the signature of a certificate with the one that it has computed itself.

Getting a certificate for a newly created private/public key pair is usually done manually. The process of
getting a signed certificate is called certificate enrollment. An entity that whishes to obtain a certificate that
is signed by a CA for a newly created private/public key pair has to carry out the following steps:

1. Generate new private/public key pair

2. Generate a certificate request for this key pair

3. Send the certificate request to a trusted third party (CA)

4. Obtain proof of authenticity

5. Get back the signed certificate

Manual certificate enrollment may be suitable for individuals that want to obtain a certificate but it isn’t an
option for large-scale deployment of public key authentication. There must be a way of obtaining certificates
that doesn’t involve manual interaction. The Simple Certificate Enrollment Protocol (SCEP) is a proposed
protocol for automated certificate enrollment. SCEP offers a standard interface to communicate with a
Certificate Authority. It includes several properties that allow it to do an automatic enrollment without any
manual interaction. All available implementations of SCEP are based on draft version 5 ([1]) of the SCEP
proposal which has been published as an offical Internet Draft. The typical usage scenarios of SCEP is a
large network environment with many network devices that require certificates. Cisco uses SCEP as the
protocol to automatically get certificates for routers and other network devices.

We will outline why the current version of SCEP, as specified in the draft version 5, isn’t usable in a browser
based environment where SCEP should be used to obtain certificates from a trusted third party. We will

1

CHAPTER 1. INTRODUCTION

furthermore propose a set of extensions to the current draft specification to enhance SCEP so it can cope
with these new requirements. We provide a reference implementation of a SCEP client to provide a basis
for evaluating the proposed enhancements.

2

Chapter 2

Motivation

SCEP ([1]) is a relatively new certificate management protocoll proposed by Cisco as an Internet Standard.
It supports certificate life cycle operations such as certificate enrollment, revocation and CRL distribution.

X.509 Certificates are used for providing proof of authentication through the trust in a CA (Certificate
Authority). One of the scenarios where X.509 certificates are used is a browser based enviornment where
SSL connections or encrypted e-mail require certificates. But there is one step that needs to be done before
a browser can use a certificate - the certificate enrollment. Certificate enrollment is usually done by hand.
This involves three steps:

1. Generation of a private key and a certificate request

2. Transmission of the certificate request to the CA; Proof of authentity to the CA

3. Installation of the signed certificate

Manually submitting the certificate request of a browser to a CA is no problem if there are just a few clients
but this is no option for a large number of users or for users with no knowledge of public key cryptography.
Large-scale deployment of certificates (for example in a company where every employee should get a certificate
or in a network environment where every network component requires its own certificate) requires automatic
certificate enrollment. That is what SCEP (Simple Certificate Enrollment Protocoll) was invented for. SCEP
is, at present, most commonly used for automatic certificate enrollment for routers.

No such mechanism as SCEP is currently available for the large-scale deployment of certificates to web
browsers. It is the aim of this project to develop a proposal for the extension of the SCEP protocol so that it
is capable of dealing with these new requirements. We furthermore aim to develop a reference implementation
for the full functionality of the extended SCEP protocol.

It has been proven that SCEP is a good solution for automatic certificate enrollment for IPSec based VPN
networks. Our reference implementation should be capable of bringing this benefit to an embedded devices
with FreeS/WAN ([20]).

2.1 Requirements

Requirements:

• Public/Private Key generation and enrollment of client certificates via SCEP.

• Automatic import into the certificate databases of Netscape and Internet Explorer

3

CHAPTER 2. MOTIVATION

• Easy portable to Windows, MacOS, Linux, Sun OS

• Usable on embedded system

• Automatic enrollment – usable without user interaction or minimal user or operator interaction

4

Chapter 3

Solutions

This chapter shows possible solutions for the mentioned problems. Advantages and disadvantages of all
solutions are described. The chapter ends with a section that shows which of the approaches were chosen to
be realized.

3.1 Certificate Storage

After a certificate has sucessfully been obtained, it must be stored on the users harddisk. The new certificate
should then easily be accessible for the common webbrowsers.

Both major Browser (Netscape & MSIE) have their own certificate database. Client & Server certificates
are stored in this database. Certificates used for the daily web browsing or email (S/MIME) are stored in
these certificate databases.

The problem faced is, how to install a new certificate into these certificate databases. This is even more
difficult because not only the certificate but also the according private key should be installed into this
database.

3.1.1 Browser supported certificate installation

Both major Browser (Netscape & MSIE) have a mechanism to generate client certificate requests. Both can
send these certificates embedded in a HTML form via HTTP to a web server. The server is then responsible
for signing this certificate and sending it back to the browser. The signed certificate can then be installed
with the HTTP response.

The advantage of this approach is the ease of use for endusers. Either they access the remote server via a
TCP/IP connection or they access a locally installed server program.

The drawback is that we face again an unsecure communication over http, when using a remote SCEP Proxy.
Even when using SSL this is only an option in a secure network.

Netscape Client Certificate Management

Netscape introduced a proprietary HTML-Tag (keygen) with Version 3.0 of its Browser. This keygen tag
causes the browser to generate a key pair, and return the public key as a form value. It thus has to be put in
a HTML-Form. The KEYGEN tag causes the browser to display a drop down box for the choice of security
grade. For an example see figure 3.1.

5

CHAPTER 3. SOLUTIONS

Figure 3.1: The Netscape 6.x certificate store

The choices available depend on the version & export type of the browser. The KEYGEN tag is not only
supported by Netscape, also Opera and KDE’s Konqueror have support for it.

When the KEYGEN-Tag is used, the browser will send the a Certifcate Request in the SPKAC format. The
SPKAC Formate is specified as follwed : (siehe developer.netscape.com) noch importieren

Please note that unlike PKCS#10 ([12]) which is used in SCEP, SPKAC ([15]) does not have any distin-
guished subject name. It does also not contain any optional set of attributes.

After the certificate has been generated on the server, it can be sent back to browser with MIME-Type
application/x. A Netscape Browser will recognize this mime type and install the certificate into it certificate
database.

Internet Explorer Client Certificate Management

Internet Explorer doesn’t come with an embedded engine for client certificate installation like Netscape’s
Navigator. It uses the CryptoAPI (CAPI) defined by Microsoft. This has the advantage that other applica-
tions can access the certificate (see 3.2)

Since CryptoAPI is a system API it can not be accessed from HTML code directly. It has to be accessed
with JavaScript or VBScript and an ActiveX Control from within a web page. The result from a call to
GenerateKeyPair is a PKCS#10 request which is put in a hidden field in a HTML Formular.

3.2 Client as a Java application

Another approach would be to write a java application which does the certificate enrollment. The same
application would also write the certificate into the browsers certificate database.

The difficulty of this approach would be the access to the different certificate databases. Examples and
Description about these databases are widley available, see [2], [3], [4], [5]. For a documentation about the
Microsoft Crypto API see [6].

Although it would be possible to access both types of certificate databases, it would be very difficult if not
impossible to do this in a portable way. It is doubtfull if this could be done with 100% Java code. This
makes this solution very hard to install for the end user.

6

CHAPTER 3. SOLUTIONS

Figure 3.2: The MS Windows certificate store

3.3 Client as a Java applet

This is approach would be very similiar to one mentioned above. The main advantage of writing the client
as a java applet is the ease of installation.

But the implementation as an applet also adds some restrictions for the implementation. A native API as
an example can not be accessed from an applet.

3.4 Native Client

Writing a native client would make it easier to access the certificate databases, since native API’s for the
certificate databases are already shipped with the browsers.

A native client would also rise the burden of making the client portable to different platforms.

3.5 Decision

We have decided to choose the road of browser supported certificate storage. We will write a SCEP Proxy in
Java which will act as an HTTP Server to the web browsers. We will initially support Mozilla and Microsoft
Internet Explorer. Support for Opera, Netscape 4 and Konqueror support will be added if time permits to
do so.

7

Chapter 4

Architecture

4.1 General Architecture

SCEP Client Library

Crypto Library

Java VM

App 1 App 2

Figure 4.1: Architecture of a SCEP client

The core of every application that wants to act as a SCEP client is the SCEP client library (Figure 4.1).
The SCEP client library provides all necessary functions that a typical SCEP client needs. This includes
the whole certificate enrollment process (sending certificate request, poll for answer) as well as the CRL
handling. The SCEP client library is based on a crypto library that provides the basic cryptography and
certificate handling functions like X509, PKCS, ASN.1 (DER and BER encoding) and S/MIME.

4.2 Types of SCEP clients

We consider two types of SCEP clients - browser based clients and embedded system clients. Both types of
clients use the same SCEP client library, but they are executed within different runtime environments (J2SE
or J2ME). Both type of clients are explained in detail in the next sections.

4.2.1 Browser based clients

Additional to the standard SCEP Client, the standalone client consists of a HTTP server that acts as a
proxy. The user can then simply point his browser to the specified URL to access the proxy. This scenario
is shown in Figure A.1.

The HTTP server (acting as proxy) serves as a local HTTP server that handles the certificate requests from a
browser. There are basically three operations that the HTTP server supports: get new certificate (request),

8

CHAPTER 4. ARCHITECTURE

SCEP Client Library

Crypto Library

Java VM

Browser Request Handling
(HTTPD Server and Handling)

c
o
n
t
r
o
l

U
I

Browser 1

Browser 2

App 1

SCEP Server

Figure 4.2: Architecture of a system with Browsers as clients

certificate polling (check whether the requested certificate is already available) and get CA certificate. De-
pending on the type of browser the user is using (Netscape, Mozilla, IE) a different version of the pages is
generated. The Netscape/Mozilla/Opera/Konqueror version uses the KEYGEN HTML tag whereas the IE
version uses an activeX control that is included by default in MS IE.

The whole package, consisting of the SCEP client library and the embedded HTTP server, is deployed
together as a single application. A user who wants to make a certificate request simply starts the proxy
server and opens a connection to it with his browser for which he wants to get a certificate. The root
certificate of the certificate authority for which the SCEP client is used will typically be included in this
package as well. This should establish the necessary trust the browser must have in the SCEP proxy.

4.2.2 Application scenarios for browser based environments

Get Root Certificate

Browsers that support certificates also need to have the ability to get the root certificate of a certificate
authority. Most browsers simply download the DER encoded root certificate of the CA via HTTP.

Certificate Request

Browser that support Certificates generate their own private key automatically when the request process is
started. How this process is initiated depends on the type of browser, but generally two differing schemes are
in use: the KEYGEN HTML tag and client side scripting. After the browser has generated its own private
key it generates a certificate request that is sent to the SCEP proxy via HTTP. Then the SCEP client deals
with this certificate request and forwards it to a SCEP server. The sequence diagram in Figure 4.3 shows
how such a request is transmitted from a Browser to the certificate authority.

CRL Request

CRL (Certificate Revocation Lists) are currently not supported by browsers. Certificate revocation needs
manual interaction.

9

CHAPTER 4. ARCHITECTURE

Browser HTTPD/SCEP Client SCEP Server

HTTP: send X509 Request

generate
private key

SCEP request

generate
Certificate

send Certificate

HTTP: send Certificate

store
Certificate

CA

PKCS#10 or SPKAC

X.509 Certificate

Figure 4.3: Sequence Diagram of a certificate request

SCEP Client Library

Crypto Library

Java CVM/KVM

Client Application

SCEP Server

Figure 4.4: Architecture of a embedded system SCEP client

10

CHAPTER 4. ARCHITECTURE

4.2.3 Embedded clients

Requirements of embedded applications

The runtime environment of an application (Figure 4.4) on an embedded system is very different from that
of a standard desktop and/or server application. Special emphasis must be given to facts like limited system
resources, limited availability of read/write storage or different deployment processes.

Facts that have to be considered when an application is required to be runnable on a embedded system:

• Limited system resources like special processor architectures, slow processors, limited memory

• Limited availability of read/write storage possibilities

• Limited Operating System support, operating system might only support a subset of usual operations

• For Java applications: Limited availability of Java standard libraries, depending on the type of virtual
machine that is used

• Execution from read-only memory

SCEP in a embedded system environment

The SCEP client library is also able to run in a J2ME environment. This makes it possible for a developer
of a embedded system application to use the SCEP client library for the certificate management.

A possible implementation of SCEP client could be a simple command line client. The developer of this
command line client could simply use the SCEP client library to communicate with a SCEP server.

An embedded system client would typically use the CDC (connected device configuration) version of the
J2ME.

4.3 Third party products

We use the following third party products.

4.3.1 BouncyCastle Crypto API

The Bouncy Castle Crypto API (See [17]) is a full fledged open source crypto API that contains a lightweight
cryptography API, a JCE provider as well as libraries for handling ANS.1, X509 Certificates and partially
PKCS.

It is possible to use the BouncyCastle Crypto API with a J2ME runtime environment because the imple-
mentation of the SCEP client doesn’t require any functionality from the JCE part.

4.3.2 ACME Serve

ACME Serve (See [16]) is a minimal HTTP server that can easily be embedded into other applications. It
is written 100% in Java and is compatible with the Java servlet API. It won the 1997 editors choice award
of Distinction of BYTE magazine.

11

http://www.bouncycastle.org/
http://http://www.acme.com/java/software/Acme.Serve.Serve.html/

CHAPTER 4. ARCHITECTURE

4.3.3 JDK1.3 / J2ME

The runtime environment is a standard JDK1.3 (or a similar J2ME environment).

4.3.4 OpenSCEP 0.4.2

OpenSCEP ([18]) is an open source implementation of a SCEP version. Version 0.4.2 implements the full
sets of extensions that are proposed in this paper.

12

Chapter 5

Design and Implementation

5.1 Overview

This implementation is divided into the following parts:

• Core (Protocol stack)

• HTTP Proxy (Gateway HTTP - SCEP)

• Command Line Client

The following parts of this chapter explains every three parts of the system in detail.

5.2 Core

The Core part of the SCEP implementation (Figure 5.1) is where the SCEP protocol itself is implemented.
It consists of all classes responsible for decoding and encoding of different SCEP messages.

5.2.1 Overall Design

Every available SCEP command is implemented in its own class inherited from ScepCommand. The class
ScepClient acts as facade (Facde pattern, see [7]) for the whole protocol implementation. The execution
of the different SCEP commands is done by the execute method of ScepClient. This utilizes the command
Pattern ([7]). ScepClient furthermore acts as a data container. It contains all data that is required to
execute the different commands. This data are for example keys (private+public), Certificate Authority
Certificates or X509-Subjects. ScepClient has the capability to dynamically load the different keys, requests
and certificates from arbitrary URLS, in particularly from http and file URL’s. All files that are required
by ScepClient are assumed to be Base64 encoded and will thus automaticaly be decoded during loading.

5.2.2 Utils - Logging

There are 3 log levels in this implementation - info, warning and error. Clients can choose which messages
of which log level should be printed.

The Log class (Figure 5.2) contains static methods callable by the whole system to output log information.
There is one method for every log level (Info, Warning,Error).

13

CHAPTER 5. DESIGN AND IMPLEMENTATION

Figure 5.1: Class diagram of the core parts

14

CHAPTER 5. DESIGN AND IMPLEMENTATION

Figure 5.2: Log class

5.2.3 Utils - MD5 Hash and RSA Algorithm

The SCEP protocol requires DES and RSA encryption with special PKCS padding mechanisms. It further-
more requires RSA encrypted MD5 hashes to sign messages. The classes in this part of the system (Figure
5.3) provide this functionality.

SCEPObjectIdentifiers contains static constants for all OID (Object Identifiers) used in the SCEP protocol
implementation. Only non-standard attributes like algorithm identifiers and specific SCEP attributes are
included in this class. Standard Object Identifiers are directly defined in the crypto library and not specified
in here.

CryptUtils provides static methods for dealing with PKCS compliant padding in RSA and DES. The class
RSAMD5Digest generates RSA encrypted MD5 signatures and MD5 digests. Utils is a general class that
offers methods for dealing with DER encoded data.

5.2.4 Utils - HTTP Client

SCEP uses HTTP/1.0 as transport protocol but Java acts as an HTTP/1.1 client by default. This causes
several problems with different encodings. HTTP/1.1 clients have to be prepared to deal with HTTP answers
that may contain chunked encoding. The class ScepHTTPGet (Figure 5.4) contains the functionality to read
answers from a SCEP server that are chunked encoded. This seems to be a weakness of the native Java HTTP
client support (URL Class) – If the HTTP client acts as a 1.1 client, it should also isolate the programmer
from the intricacies of 1.1 chunked encoding or it should at least allow the programmer to fall back to 1.0,
so that (s)he does’t need to deal with it.

5.2.5 Utils - Base64 encoding, conversion of DER Objects

This part (Figure 5.5) of the Utils constists of classes for the handling of Base64 encoded files, strings and
streams. It furthermore contains methods to convert DER Objects to bytearrays and vice-versa.

The class PEMReader consists of different methods to decode Base64 encoded data and PEMWriter contains
different methods to encode data as Base64.

15

CHAPTER 5. DESIGN AND IMPLEMENTATION

Figure 5.3: Cryptography support classes

Figure 5.4: HTTP client class

16

CHAPTER 5. DESIGN AND IMPLEMENTATION

Figure 5.5: Base64 support classes

5.2.6 Protocol - Commands

The relevant SCEP commands for this client implementation are PKCSReq and CertRep. The other com-
mands that are specified in the SCEP protocol specification are not relevant for this implementation.

There is one specific class (Figure 5.6) for handling every type of SCEP command.

certRequest is the class responsible for generating a SCEP request whereas certRep is responsible for decoding
an answer from a SCEP server. These two classes contain the core of the SCEP protocol. They include the
computation of transactionID’s, MD5 digests and signatures as well as RSA and DES encryption/decryption.
It furthermore generates the different ASN.1 structures out of this information which is afterwards being
sent to a SCEP server.

5.2.7 Protocol - PKCS#7

Figure 5.7 shows the implementation classes of PKCS#7. Only the parts of PKCS#7 that are required
by SCEP are implemented. EnvelopedData, SignedData and SignerInfo will become part of BouncyCastle
later.

5.3 Proxy

The SCEP proxy for web browsers is designed to make it easy to add support for browsers which are not
supported as of today. It strives for easy configuration and deployment on client computers and maximal
reuse of code.

The proxys main class is HTTPClient. It creates an instance of ACME-Serve and registers the servlets. All
interactions are then handled by the servlets located in the package ch.othello.openscep.servlet (see figure
5.8)

5.3.1 Design

We will look at the different servlets in the sequence of a user interacting with them. As an example we take
a user of a Netscape compatible browser enrolling for a certificate at an authority with automatic enrollment
(see figure 5.9)

17

CHAPTER 5. DESIGN AND IMPLEMENTATION

Figure 5.6: Classes for the SCEP commands

Figure 5.7: PKCS#7

18

CHAPTER 5. DESIGN AND IMPLEMENTATION

Figure 5.8: HTTP proxy classes

19

CHAPTER 5. DESIGN AND IMPLEMENTATION

Figure 5.9: Sequence of a User interacting with the Proxy

20

CHAPTER 5. DESIGN AND IMPLEMENTATION

The BrowserDectectionServlet intercepts the users first request and tries to detect the type of browser by
the http header field named user-agent. It forwards the users to the specific servlet for its browser type. In
our example this is /netscape/request (1).

The NetscapeRequestServlet answers requests for this path. Depending on the configuration, it first asks the
user for a challenge password (2) or directly presents him the certificate generation form (3). The certificate
generation form is then submitted again to this servlet, which issues the enrollment request to the SCEP
server (4). If the enrollment is successful it sends the certificate back to the browser which installs it in its
database.

If the request is pending on the SCEP server, the state of the ScepClient is saved in one or more cookies
which are sent to the browser. The users browser is then forwarded to the poll servlet responsible for this
type of browser (5), here NetscapePollServlet. The browser then periodically polls for the certificate until
the poll servlet sends the issued certificate.

To maximise code resuablility and lower the possiblity of errors, common functionality of the servlet for the
two different browsers has been extracted to Baseclasses. BasicServlet implements functions to detect the
desired language (see section 5.3.3 on page 22), loading the config file, decorating the output and displaying
an ErrorPage to the user.

BasicRequestServlet implements common certificate request functionality. The service method checks if a
challenge password has been entered and asks for one if this is required. It proceeds to the certificate request
form afterwards.

5.3.2 Configuration

The SCEP Proxy can easily be adapted to specific requirements . A property file (scepProxyConfig), which
is located in the package ch.othello.openscep.servlet, is used as configuration file. The config file is put into
the java archive of the proxy to make it even easier to install. Should you feel the need to make local changes
to your config file and don’t want to put it into the java archive you can specify the location of the config
file with the command line switch -c configfile.

Configuration parameters

url=http://openscep.othello.ch/pkiclient.exe
#specifies the url for the SCEP cgi program

caCertUrl=http://openscep.othello.ch/cacert.pem
#specifies the url for the CA Certificate

privateKey=file:///usr/locale/lib/scep/examples/rsaprivatekey.pem
publicKey=file:///usr/locale/lib/scep/examples/rsapublickey.pem
#these two parameters tell SCEP Proxy where to look for it’s own public/private key pair

proxySubject=CN=SCEP Proxy, O=OpenSCEP Ltd., OU=Studenten, L=Rapperswil, ST=SG, C=Switzerland
#this is the distinguished name used by the proxy

communityString=SCEPCommunity
#this is the community string which identifies this proxy to the SCEP server as beeing
#member of a community

forceChallenge=true
#if this parameters value is true, the user will be asked for a challenge String, default
#is false

21

CHAPTER 5. DESIGN AND IMPLEMENTATION

challenge=Please enter your challenge Password
#this is the default value set for the challenge password

pollTimeout=10
#this sets the timeout until polling for the certificate will be tried again

#The Following parameters are used for defaultValues for the enrollees distinguished name.
#The Default value is enforced if the value of the coresponding _Default parameter is true

commonName=
emailAddress=
organization=OpenSCEP Ltd.
organization_Default=true
orgUnit=Studenten
locality=Rapperswil
locality_Default=true
state=SG
state_Default=true
country=Switzerland
country_Default=true

5.3.3 Translation

Since this piece of code was developed in Switzerland, it should be easily translatable to different languages.
This is achievd by using Java Resource Bundles. Until now the SCEP Proxy has been written in english and
translated to german. The respective files are HTTPResources.properties and HTTPResources.properties de.

Language detection

The SCEP Proxy tries to detect the user’s language by parsing the HTTP-Header accept-language. It
accepts the first choice which it finds. This is due to Java’s PropertyResourceBundle automatically falling
back to the the default language (if the desired language is not supported). This language negotiation can be
overridden by adding the parameter lang=XX to the url where XX is the ISO Locale Code (de or de CH).

5.3.4 Appearance

In its default configuration the SCEP Proxy has a simplistic look. But the proxy implements a derivation
of the decorator pattern (see [7]). In the configuration one can specify a decorator file which can add a
customized appearance to the SCEP Proxy. This file can be included in the jar file or somewhere on the
local filesystem.

The decorator file can contain two different variables.

• {SCEPTITLE} - is replaced by the title of the actual page

• {SCEPCONTENT} - is replaced by the actual content generated by the SCEP Proxy servlets

5.4 Command Line Client

The SCEP command line client is capable of doing version 1 and version 2 requests with either PKCS#10
or SPKAC as embedded certificate request. The certificate request itself has to be supplied as a compulsory

22

CHAPTER 5. DESIGN AND IMPLEMENTATION

command line argument as it isn’t automatically generated by the command line client. The command line
client loads all external files as an URL which gives the flexibility to load the required files, either per HTTP
or from a ordinary file

5.4.1 Implementation

5.4.2 Options

The command line client offers the following options (see the examples in the following section for clarifica-
tion).

-verbose
-logLevel number 1, 2 or 3 (1=minimum, 3=maximum, default=3)
-requestType PKCS|SPKAC only valid for version 2 (default is PKCS)
-version 1|2 SCEP Version (default 1)
-poll poll the server for a certificate
-subject string subject string, eg. CN=xxxx . only if type=SPKAC
-subjectProxy string subject of the proxy, eg. CN=xxxx . only if type=SPKAC
-community string Community String (V2->proxy)
-caCertURL url URL to get the CA cert eg http://..../ or file:///tmp/...
-privatekey filename URL to get the private key
-pubkey filename URL to get the public key (is automaticly extracted from the

pkcs#10 request (if available)
-certReq filename URL to get the certification request
-serverURL theURL URL of the server to which requests are sent eg http://..../
-request filename File where the request is being stored before it is sent out
-response filename Manually supply a response from a SCEP server
-certificate filename Location (URL) where the CA signed end entity certificate is written

to (in case of a SUCCESS response)

5.4.3 Examples

The following examples assume that the following files are present:

• /tmp/rsaprivatekey.pem Base64 encoded RSA Private Key of the Proxy

• /tmp/rsapublickey.pem Base64 encoded RSA Public Key of the Proxy

• /tmp/rsaprivatekeyScep.pem Base64 encoded RSA Private Key of the Proxy

• /tmp/rsapublickeyScep.pem Base64 encoded RSA Public Key of the Proxy

• /tmp/pkcs10.pem Base64 encoded PKCS#10 Request

• /tmp/spkac.pem Base64 encoded SPKAC Request

It is furthermore assumed that the SCEP Server is reachable at the URL http://localhost/cgi-bin/openscep/pkiclient.exe
and that the Certificate Authority Certificate is available at the URL http://localhost/cacert.pem

The answer of a request (in case of a SUCCESS response) is written to /tmp/answer in the following
examples.

23

http://localhost/cgi-bin/openscep/pkiclient.exe
http://localhost/cacert.pem

CHAPTER 5. DESIGN AND IMPLEMENTATION

PKCS#10 with SCEP Version 1

For a version 1 request the supplied private key matches the public key of PKCS#10. Due to this the public
key mustn’t be specified in case of a version 1 request as it is automatically extraced from the PKCS#10
request.

To make a PKCS#10 request with SCEP Version 1:

java -jar scepclient-cmd.jar
-logLevel 3 -caCertURL http://localhost/cacert.pem
-privatekey file:///tmp/rsaprivatekey.pem -certReq file:///tmp/pkcs10.pem
-serverURL http://localhost/cgi-bin/openscep/pkiclient.exe certRequest

PKCS#10 and SPKAC with Version 2

Following are two examples of a call to the SCEP command line client that illustrate the major difference
between SCEP version 1 and version 2. Version 2, in contrast to version 1, works with two different
public/private keypairs. The first keypair is used by the certificate requesting end entity, the second one
is used by the SCEP proxy to encrypt the communication between the proxy and the SCEP server. The
SCEP proxy just knows the public key of the certificate requesting end entity but not the private key of it(in
contrast to version 1).

To make a PKCS#10 request with SCEP Version 2 (SCEP Client is acting as proxy):

java -jar scepclient-cmd.jar
-logLevel 2
-requestType PKCS
-version 2
-community SCEPCommunity
-pubkey file:///tmp/rsapublickeyScep.pem
-caCertURL http://localhost/cacert.pem
-privatekey file:///tmp/rsaprivatekeyScep.pem
-certReq file:///tmp/pkcs10.pem
-certificate file:///tmp/answer.pem
-serverURL http://localhost/cgi-bin/openscep/pkiclient.exe certRequest

To make a SPKAC request with SCEP version 2 (SCEP client action as proxy):

java -jar dist/scepclient-cmd.jar
-logLevel 3
-requestType SPKAC
-subject CN=easc.ch,O=CH
-subjectProxy CN=hinn.ch
-version 2
-community SCEPCommunity
-pubkey file:///tmp/rsapublickeyScep.pem
-caCertURL http://localhost/cacert.pem
-privatekey file:///tmp/rsaprivatekeyScep.pem
-certReq file:///tmp/spkac.pem
-serverURL http://localhost/cgi-bin/openscep/pkiclient.exe certRequest

5.5 Packaging

The SCEP client package is divided into the packages

24

CHAPTER 5. DESIGN AND IMPLEMENTATION

• ch.othello.openscep
Contains all clients that are using the SCEP client library. It furthermore contains the ScepClient class
which acts as a facade to the protocol implementationl

• ch.othello.openscep.internal
Contains utility classes for reading/writing Base64 encoded files, for MD5 signing, RSA encryption
and logging.

• ch.othello.openscep.internal.commands
Contains the implementation of the SCEP protocol

• ch.othello.servlet
Contains all servlets that are required by the http proxy implementation of the SCEP client

• ch.easc.tests Contains utility classes for dumping out X509 and ASN.1 structures (for debugging)

5.6 Deployment

5.6.1 Build

All necessary jar files to build this package are included. You only have to start build.sh resp. build.bat.
The build systems uses ant (included in the subdirectory lib).

The ant targets are :

• all
This is the standard target. It builds the two later mentioned jar files

• http-jar
dist/scepclient-http.jar which contains the http proxy client. To start the proxy type : java -jar
dist/scepclient-http.jar

• cmd-jar
This is a commandline client with minimal memory requirements. It builds the jar file dist/scepclient-
cmd.jar. To start the cmd client type : java -jar dist/scepclient-cmd.jar

5.6.2 Configuration

The command line package (scepclient-cmd.jar) doesn’t contain any deployment specific files. All neces-
sary options can be supplied as command line arguments. Thus, no customization of scepclient-cmd.jar is
necessary.

scepclient-http.jar contains various deployment-specific files:

ch/othello/openscep/servlet/scepProxyConfig Proxy Configuration File

HTTPResources.properties Language specific configuration file; This file contains the default language

HTTPResources de.properties The same but for german (Language code de). Add more of this files if
you want to have other languages

Adjust this files if necessary.

25

Appendix A

Proposal for the extension of the
SCEP Protocol

A.1 Motivation

The SCEP protocol was originally designed to be a simple certificate enrollment protocol. Due to todays
increasingly complex network environments, automatic certificate enrollment is one of the most critical issues
in deploying big and distributed network environments that could possible involve thousands of different
certificates that need to be issued and managed. SCEP gives a simple approach to communicate with a
CA. It is, however, limited, as it can only be used by clients that directly implement the SCEP protocol.
SCEP Servers can (and do) work as a front-end of a real CA server so that the real CA server doesn’t have
to implement the SCEP protocol. This is, however, not possible at the client side. Every client that wants
to request a certificate has to fulfill two criteria: Firstly, it has to implement the full SCEP protocol and
secondly it has to use PKCS#10 as certificate request format. This two preconditions severely limit the
applicability of SCEP.

As an example lets look at the situation where the user of an HTML-Browser likes to generate a Certificate
and let it be signed by the CA via the SCEP Protocoll. Current Browsers do not implement the SCEP
Protocoll. But they are able to generate a Certificate Request and send it to an HTTP Server. This
Certificate Request is in PKCS#10 for Microsofts Internet Explorer but in SPKAC for Netscape Navigator
and a plethora of other browsers.

The first extension of SCEP is to allow a SCEP client to act as a proxy. This would allow it to have one
central SCEP client that acts as a proxy for all the other entities in a network. All the requests that would
be received by this SCEP client (which is acting as proxy) would then be forwarded to the respective SCEP
server. A similiar problem has arisen with the BOOTP Protocoll. BOOTP introduced the concept of a
BOOTP relay agent (RFC 951) to deal with this.

The second extension concerns the limitation to PKCS#10. Restricting the request format to PKCS#10
unnecessarly limits the usage of SCEP, particularly in a browser-based environment. In browser based
environments there are two certificate request formats that are most commonly used – PKCS#10 and
SPKAC. SPKAC is the format that is used by all browsers of the netscape/mozilla family as well as various
other browsers (kde, opera).

The following proposal is divided into two parts: The first part deals with the details of the proxy function-
ality, the second one deals with the extension of SCEP to allow it to use different certificate request formats.
Both sections of the proposal frequently refer to the third section where the complete ASN.1 specification of
the proposed protocol extensions is given.

26

APPENDIX A. PROPOSAL FOR THE EXTENSION OF THE SCEP PROTOCOL

A.2 Extension 1: Proxy

The SCEP protocol draft deals with an end entities key pair. In case of a SCEP client that is acting as
proxy it is, however, not always clear which end entity is meant by that – is it the end entity that is actually
requesting the certificate or is it the end entity that is dealing with the SCEP protocol (SCEP client)? As
long as the end entity that is dealing with the SCEP request is the same as the one that actually wants to
request a certificate is the same that doesn’t matter. But except for the originally intended use of SCEP,
routers, this is usually not the case.

Take the example of a application that wants to request a certificate. This application would typically use
a SCEP client library that uses its own private/public key. To make it clear which key has to be used we
distinguish between the public/private key of the SCEP client and the public/private key of the certificate
requesting end entity. Depending on the application, the public/private key of the SCEP client and the
certificate requesting end entity can be the same, but this isn’t a requirement anymore.

Client Proxy/SCEP Client SCEP Server

cert Request

generate
private key

SCEP request

issue
Certificate

SCEP response
cert Response

store
Certificate

CA

CA req

CA response

Figure A.1: Sequence Diagram that shows how a certificate request is being forwarded by a SCEP proxy

The proxy functionality introduces a new cryptographic entity, in which trust must be established. While
the request itself can be authenticated using attributes in the request (the challengePasswort in the case
of a PKCS#10 request, the challenge in a SPKAC request), there is no longer a connection between the
SCEP client and the certificate requestor as in the original SCEP protocol. Only proxies that have previously
been authorized should be acceptable, so a shared secret (community string) between proxy and server seems
appropriate. To establish the connection between the SCEP client and the community, the community string
must be part of the signed attributes of the SCEP request. But as the signed attributes are transmitted in
clear, the community string must first be hidden in some way.

We should also make sure that the attribute derived from the community string can only be used once: every
new client request should lead to a different attribute value. We propose to construct a new proxyIdenti-
fication attribute as the MD5 hash of the concatenation of request payload and community string. This
makes it impossible for an attacker to snoop a proxyIdentification attribute from the network and use it for
a different request without actually knowing the community string. Only a proxy knowing the community
string can generate a proxyIdentifcation attribute, and each request leads to a different value.

Requested changes in the SCEP Standard :

All occurrences of “end entity’s private key” or “end entity’s public key” have to be clarified. They have to
be changed either to “certificate requesting end entity’s private/public key” or “SCEP client’s public/private
key”.

The attribute proxyIdentification should be added to the list of authenticated Attributes in the SignedData

27

APPENDIX A. PROPOSAL FOR THE EXTENSION OF THE SCEP PROTOCOL

data structure.

• proxyIdentification Octet String

proxyIdentification contains a MD5 hash of the combination of the Payload and the communityString (see
ASN.1 specification for details).

A.3 Extension 2: generic certificate request format

The current version of SCEP implicitly assumes that PKCS#10 is used as certificate request format, but
this fact is never explicitly stated. To clearly distinguish between this two format an additonal parameter
requestType is part of requestPayload.

The following values for requestType are proposed :

• PKCS#10 (0) – PKCS#10

• SPKAC (1) – SPKAC

Each certificate request format includes other attributes but SCEP only needs the subjectName attribute.
As this attribute isn’t part of all available certificate request formats there needs to be a possibility to
add additional attributes to a request. Because of this, we propose to add a additional Structure called
requestPayload that contains the original request and an additional set of attributes where arbitrary PKCS#9
attributes can be added.

RequestPayload ::= SEQUENCE {
requestType INTEGER
originalRequest BIT STRING -- CertificationRequest or SignedPublicKeyAndChallenge

attributes ::= SET { -- DER tagged (unauthenticated),as specified in PKCS#9
subject --only required for SPKAC
-- PKCS#9 attributes, for example SubjectName in the case of SPKAC,
-- none in the case of PKCS#10

}
}

The calculation of the transactionID needs to be clarified when there are other request formats then
PKCS#10 involved. Currently, the transactionID is calculated as the MD5 hash of the public key of the
certificate requesting end entity. As other formats like SPKAC don’t necessarly allow it to (easily) access the
public key of the certificate requesting end entity this is not a practical way to calculate the transactionID.
We propose to calculate the transactionID as following: transactionID is the MD5 hash of the combination
of the requestPayload and the SCEP proxy public key. This allows it to clearly identify requests that are
coming from the same end entity and the same proxy.

A.4 ASN.1 specification of the proposal

-- PKCSReq information portion
pkcsCertReq CertificationRequest ::= { -- PKCS#10

version 0
subject "the certificate requesting end entity’s subject name"
subjectPublicKeyInfo {

28

APPENDIX A. PROPOSAL FOR THE EXTENSION OF THE SCEP PROTOCOL

algorithm {pkcs-1 1} -- rsa encryption
subjectPublicKey "DER encoding of the certificate requesting end entity’s public key"

}
attributes {

challengePassword {{pkcs-9 7} "password string" }
extensions

}
signatureAlgorithm {pkcs-1 4} -- MD5WithRSAEncryption
signature "bit string which is created by signing inner content

of the defined pkcsCertReq using certificate requesting end entity’s private
key, corresponding to the public key included in
subjectPublicKeyInfo."

}

--SPKAC, as specified by netscape
PublicKeyAndChallenge ::= SEQUENCE {
spki SubjectPublicKeyInfo,
challenge IA5STRING

}
SignedPublicKeyAndChallenge ::= SEQUENCE {
publicKeyAndChallenge PublicKeyAndChallenge,
signatureAlgorithm AlgorithmIdentifier,
signature BIT STRING

}

RequestPayload ::= SEQUENCE {
requesttype INTEGER
originalRequest BIT STRING -- original PKCS#10 (CertificationRequest)

-- or SPKAC request (SignedPublicKeyAndChallenge)
attributes ::= SET { -- DER tagged (unauthenticated),as specified in PKCS#9

subject -- only required for SPKAC
-- PKCS#9 attributes, for example SubjectName in the case of SPKAC,
-- none in the case of PKCS#10

}
}

-- Enveloped information portion
pkcsCertReqEnvelope EnvelopeData ::= { -- PKCS#7

version 0
recipientInfo {

version 0
issuerAndSerialNumber {

issuer "the CA issuer name"
serialNumber "the CA certificate serial number"

}
keyEncryptionAlgorithm {pkcs-1 1} -- rsa encryption
encryptedKey "content-encryption key

encrypted by CA public key"
}
encryptedContentInfo {

contentType {pkcs-7 1} -- data content
contentEncryptionAlgorithm "object identifier

for DES encryption"
encryptedContent "encrypted requestPayload using

the content encryption key"
}

}

29

APPENDIX A. PROPOSAL FOR THE EXTENSION OF THE SCEP PROTOCOL

-- Signed PKCSReq
pkcsCertReqSigned SignedData ::= { -- PKCS#7

version 1
digestAlgorithm {iso(1) member-body(2) US(840) rsadsi(113549)

digestAlgorithm(2) 5}
contentInfo {

contentType {pkcs-7 1} -- data content identifier
content pkcsCertReqEnvelope

}
certificate { -- the SCEP client’s self-signed certificate

version 3
serialNumber "the transaction id associated with enrollment"
signature {pkcs-1 4} -- md5WithRSAEncryption

issuer " the SCEP client’s subject name"
validity {

notBefore "a UTC time"
notAfter "a UTC time"

}
subject "the SCEP client’s subject name"
subjectPublicKeyInfo {

algorithm {pkcs-1 1}
subjectPublicKey "DER encoding of SCEP client’s public key"

}
signatureAlgorithm {pkcs-1 4}
signature "the signature generated by using the SCEP client’s

private key corresponding to the public key in
this certificate."

}
signerInfo {

version 1
issuerAndSerialNumber {

issuer "the SCEP client’s subject name"
serialNumber "the transaction id associated

with the enrollment"
}
digestAlgorithm {iso(0) member-body(2) US(840) rsadsi(113549)

digestAlgorithm(2) 5}
authenticateAttributes {

contentType {{pkcs-9 3} {pkcs-7 1}}
messageDigest {{pkcs-9 4} "an octet string"}
transaction-id {{id-attributes transId(7)} "printable

string"}
-- this transaction id will be used
-- together with the subject name (of the certificate request) as
-- the identifier of the certificate requesting end entity’s key
-- pair during enrollment

messageType {{id-attributes messageType(2)} "PKCSReq"} --DERPrintableString

proxyIdentification
{{id-attributes proxyIdentification(id-proxyIdentification)} "hash"} -- see definition

senderNonce {{id-attributes senderNonce(5)}
"a random number encoded as a string"}

}
digestEncryptionAlgorithm {pkcs-1 1} -- rsa encryption
encryptedDigest "encrypted digest of the authenticated

attributes using SCEP client’s private key"

30

APPENDIX A. PROPOSAL FOR THE EXTENSION OF THE SCEP PROTOCOL

}
}
pkcsReq PKIMessage ::= {

contentType {pkcs-7 2}
content pkcsCertRepSigned

}

id-proxyIdentification OBJECT_IDENTIFIER ::= {1 3 6 1 4 1 4263 5 5} --othello namespace

The following attribute is encoded as an authenticated attribute.

• proxyIdentification Octet String

proxyIdentification is the MD5 hash of requestPayload (whole structure) combined with the communityS-
tring. This makes sure that the proxy who sent this request knows the communityString. To prove that
the proxy knows the communityString the communityString itself doesn’t have to be transmitted over the
network - combining the requestPayload and the communityString to calculate a MD5 hash of it is sufficient.
Please not that the communityString is a raw string that isn’t encoded as any form of DER String before
the MD5 hash is being calculated.

The attribute requestType in requestPayload can have the following values :

• PKCS#10 (0) – PKCS#10

• SPKAC (1) – SPKAC

The attribute messageTyp of a SCEP request originally had the value ”19” (DERPrintableString). To
identify a SCEP request of a newer version (e.g. with a requestPayload structure and/or different keys
because a proxy is sending the request) as early as possible, new values for messageType are used for this
extension. The are defined as following:

• 19 normal SCEP request as specified in the offical proposal

• 17 SCEP request that contains a requestPayload structure that is directly being sent by an end entity

• 18 SCEP request that contains a requestPayload that is being sent from a proxy

RequestPayload contains the original certificate request, which is either PKCS#10 or SPKAC (at present,
can be extended). Depending on the type of request, additional attributes can be added to the payload.
This is, for example, used to add the subjectName attribute, which is not part of a SPKAC request.

A.5 SPKAC example

Following is a ASN.1 dump of a SPKAC request as it is generated by a browser (Netscape).

0:d=0 hl=4 l= 586 cons: SEQUENCE
4:d=1 hl=4 l= 306 cons: SEQUENCE
8:d=2 hl=4 l= 290 cons: SEQUENCE
12:d=3 hl=2 l= 13 cons: SEQUENCE
14:d=4 hl=2 l= 9 prim: OBJECT :rsaEncryption
25:d=4 hl=2 l= 0 prim: NULL

31

APPENDIX A. PROPOSAL FOR THE EXTENSION OF THE SCEP PROTOCOL

27:d=3 hl=4 l= 271 prim: BIT STRING
302:d=2 hl=2 l= 10 prim: IA5STRING :1234567890
314:d=1 hl=2 l= 13 cons: SEQUENCE
316:d=2 hl=2 l= 9 prim: OBJECT :md5WithRSAEncryption
327:d=2 hl=2 l= 0 prim: NULL
329:d=1 hl=4 l= 257 prim: BIT STRING

A.6 PKCS#10 example

Following is an example of a PKCS#10 request as it is generated by a browser (Internet Explorer in this
case).

0:d=0 hl=4 l= 783 cons: SEQUENCE
4:d=1 hl=4 l= 632 cons: SEQUENCE
8:d=2 hl=2 l= 1 prim: INTEGER :00
11:d=2 hl=3 l= 140 cons: SEQUENCE
14:d=3 hl=2 l= 20 cons: SET
16:d=4 hl=2 l= 18 cons: SEQUENCE
18:d=5 hl=2 l= 3 prim: OBJECT :countryName
23:d=5 hl=2 l= 11 prim: PRINTABLESTRING :Switzerland
36:d=3 hl=2 l= 11 cons: SET
38:d=4 hl=2 l= 9 cons: SEQUENCE
40:d=5 hl=2 l= 3 prim: OBJECT :stateOrProvinceName
45:d=5 hl=2 l= 2 prim: PRINTABLESTRING :SG
49:d=3 hl=2 l= 19 cons: SET
51:d=4 hl=2 l= 17 cons: SEQUENCE
53:d=5 hl=2 l= 3 prim: OBJECT :localityName
58:d=5 hl=2 l= 10 prim: PRINTABLESTRING :Rapperswil
70:d=3 hl=2 l= 22 cons: SET
72:d=4 hl=2 l= 20 cons: SEQUENCE
74:d=5 hl=2 l= 3 prim: OBJECT :organizationName
79:d=5 hl=2 l= 13 prim: PRINTABLESTRING :OpenScep Ltd.
94:d=3 hl=2 l= 18 cons: SET
96:d=4 hl=2 l= 16 cons: SEQUENCE
98:d=5 hl=2 l= 3 prim: OBJECT :organizationalUnitName

103:d=5 hl=2 l= 9 prim: PRINTABLESTRING :Studenten
114:d=3 hl=2 l= 13 cons: SET
116:d=4 hl=2 l= 11 cons: SEQUENCE
118:d=5 hl=2 l= 3 prim: OBJECT :commonName
123:d=5 hl=2 l= 4 prim: PRINTABLESTRING :sdfg
129:d=3 hl=2 l= 23 cons: SET
131:d=4 hl=2 l= 21 cons: SEQUENCE
133:d=5 hl=2 l= 9 prim: OBJECT :emailAddress
144:d=5 hl=2 l= 8 prim: IA5STRING :asdfasdf
154:d=2 hl=3 l= 159 cons: SEQUENCE
157:d=3 hl=2 l= 13 cons: SEQUENCE
159:d=4 hl=2 l= 9 prim: OBJECT :rsaEncryption
170:d=4 hl=2 l= 0 prim: NULL
172:d=3 hl=3 l= 141 prim: BIT STRING

0001 - <SPACES/NULS>
316:d=2 hl=4 l= 320 cons: cont [0]
320:d=3 hl=2 l= 26 cons: SEQUENCE
322:d=4 hl=2 l= 10 prim: OBJECT :1.3.6.1.4.1.311.13.2.3
334:d=4 hl=2 l= 12 cons: SET

32

APPENDIX A. PROPOSAL FOR THE EXTENSION OF THE SCEP PROTOCOL

336:d=5 hl=2 l= 10 prim: IA5STRING :5.0.2195.2
348:d=3 hl=2 l= 32 cons: SEQUENCE
350:d=4 hl=2 l= 10 prim: OBJECT :Microsoft Extension Request
362:d=4 hl=2 l= 18 cons: SET
364:d=5 hl=2 l= 16 cons: SEQUENCE
366:d=6 hl=2 l= 14 cons: SEQUENCE
368:d=7 hl=2 l= 3 prim: OBJECT :X509v3 Key Usage
373:d=7 hl=2 l= 1 prim: BOOLEAN :255
376:d=7 hl=2 l= 4 prim: OCTET STRING

0000 - 03 .
382:d=3 hl=3 l= 255 cons: SEQUENCE
385:d=4 hl=2 l= 10 prim: OBJECT :1.3.6.1.4.1.311.13.2.2
397:d=4 hl=3 l= 240 cons: SET
400:d=5 hl=3 l= 237 cons: SEQUENCE
403:d=6 hl=2 l= 1 prim: INTEGER :01
406:d=6 hl=2 l= 92 prim: BMPSTRING
500:d=6 hl=3 l= 137 prim: BIT STRING

0001 - <SPACES/NULS>
640:d=1 hl=2 l= 13 cons: SEQUENCE
642:d=2 hl=2 l= 9 prim: OBJECT :md5WithRSAEncryption
653:d=2 hl=2 l= 0 prim: NULL
655:d=1 hl=3 l= 129 prim: BIT STRING

0001 - <SPACES/NULS>

33

Glossary

CA Certificate Authority

CRL Certificate Revocation List

DES Data encryption standard

DN Distinguished Name

JCE Java Cryptography Extension

KEYGEN Netscape proprietary HTML Tag that is also supported by other browsers like Opera

MD5 Hashing algorithm

PKCS Public Key Cryptography Standard

RA Registration Authority

RSA Public key encryption algorithm - named after the three inventors Ron Rivest, Adi Shamir and
Leonard Adleman

SPKAC Netscape signed public key and challenge (ASN.1 structure)

34

Bibliography

[1] Internet Draft, Cisco Systems’ Simple Certificate Enrollment Protocol SCEP, draft-nourse-scep-05

[2] Netscape Certificate Database Information
Available at : http://www.drh-consultancy.demon.co.uk/cert7.html

[3] Netscape Communicator Key Database Format
Available at : http://www.drh-consultancy.demon.co.uk/key3.html

[4] Mozzila.org - Using the Certificate Database Tool
Available at : http://www.mozilla.org/projects/security/pki/nss/tools/certutil.html

[5] Netscape DB KeyStore Research Edition 1.0
Available at : http://agora.sei.cmu.edu/ndbs10/

[6] The Cryptography API, or How to Keep a Secret
Availabale at :
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncapi/html/msdn cryptapi.asp

[7] Erich Gamma et al; Design Patterns, Elements of Reusable Object-Oriented Software.

[8] Schneier, Bruce, Applied Cryptography, 2nd Edition, Wiley, 1996.

[9] RSA Laboratories; Public Key Cryptography Standard #1 (RSA Cryptography standard). Available
at: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/index.html

[10] RSA Laboratories; Public Key Cryptography Standard #7 (Cryptographic Message Syntax Standard).
Available at: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-7/index.html

[11] RSA Laboratories; Public Key Cryptography Standard #9 (Selected Attribute Types). Available at:
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-9/index.html

[12] RSA Laboratories; Public Key Cryptography Standard #9 (Certification Request Syntax Standard).
Available at: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-10/index.html

[13] RSA Laboratories; Public Key Cryptography Standard #9 (Personal Information Exchange Syntax
Standard). Available at: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-12/index.html

[14] Kaliski, Burton S., Jr., ”An Overview of the PKCS Standards”, An RSA Laboratories Technical Note,
revised November 1, 1993. Available at: http://www.rsa.com/rsalabs/pubs/PKCS/

[15] Netscape Certificate Specifications, available at http://www.netscape.com/eng/security/certs.html

[16] ACME Sere, a HTTP server. Available at http://http://www.acme.com/java/software/Acme.Serve.Serve.html/

[17] Bouncy Castle Crypto API, a lightweight, opensoure, Javacryptography API. Available at:
http://www.bouncycastle.org

[18] OpenSCEP, an opensource server implementation of SCEP. Available at:
http://openscep.othello.ch

[19] Apache ANT, a java based build tool. Available at: http://jakarata.apache.org/ant/index.html

[20] The Linux FreeS/WAN project. Available at: http://www.freeswan.org

35

http://www.drh-consultancy.demon.co.uk/cert7.html
http://www.drh-consultancy.demon.co.uk/key3.html
http://www.mozilla.org/projects/security/pki/nss/tools/certutil.html
http://agora.sei.cmu.edu/ndbs10/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncapi/html/msdnprotect unhbox voidb@x kern .06emvbox {hrule width.3em}cryptapi.asp
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/index.html
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-7/index.html
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-9/index.html
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-10/index.html
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-12/index.html
http://www.rsa.com/rsalabs/pubs/PKCS/
http://www.netscape.com/eng/security/certs.html
http://http://www.acme.com/java/software/Acme.Serve.Serve.html/
http://www.bouncycastle.org
http://openscep.othello.ch
http://jakarata.apache.org/ant/index.html
http://www.freeswan.org

	Preface
	Introduction
	Motivation
	Requirements

	Solutions
	Certificate Storage
	Browser supported certificate installation

	Client as a Java application
	Client as a Java applet
	Native Client
	Decision

	Architecture
	General Architecture
	Types of SCEP clients
	Browser based clients
	Application scenarios for browser based environments
	Embedded clients

	Third party products
	BouncyCastle Crypto API
	ACME Serve
	JDK1.3 / J2ME
	OpenSCEP 0.4.2

	Design and Implementation
	Overview
	Core
	Overall Design
	Utils - Logging
	Utils - MD5 Hash and RSA Algorithm
	Utils - HTTP Client
	Utils - Base64 encoding, conversion of DER Objects
	Protocol - Commands
	Protocol - PKCS#7

	Proxy
	Design
	Configuration
	Translation
	Appearance

	Command Line Client
	Implementation
	Options
	Examples

	Packaging
	Deployment
	Build
	Configuration

	Proposal for the extension of the SCEP Protocol
	Motivation
	Extension 1: Proxy
	Extension 2: generic certificate request format
	ASN.1 specification of the proposal
	SPKAC example
	PKCS#10 example

	Glossary
	Bibliography

